995 resultados para Calcium-dependent
Resumo:
To determine the mechanisms responsible for the termination of Ca2+-activated Cl− currents (ICl(Ca)), simultaneous measurements of whole cell currents and intracellular Ca2+ concentration ([Ca2+]i) were made in equine tracheal myocytes. In nondialyzed cells, or cells dialyzed with 1 mM ATP, ICl(Ca) decayed before the [Ca2+]i decline, whereas the calcium-activated potassium current decayed at the same rate as [Ca2+]i. Substitution of AMP-PNP or ADP for ATP markedly prolonged the decay of ICl(Ca), resulting in a rate of current decay similar to that of the fall in [Ca2+]i. In the presence of ATP, dialysis of the calmodulin antagonist W7, the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN93, or a CaMKII-specific peptide inhibitor the rate of ICl(Ca) decay was slowed and matched the [Ca2+]i decline, whereas H7, a nonspecific kinase inhibitor with low affinity for CaMKII, was without effect. When a sustained increase in [Ca2+]i was produced in ATP dialyzed cells, the current decayed completely, whereas in cells loaded with 5′-adenylylimidodiphosphate (AMP-PNP), KN93, or the CaMKII inhibitory peptide, ICl(Ca) did not decay. Slowly decaying currents were repeatedly evoked in ADP- or AMP-PNP-loaded cells, but dialysis of adenosine 5′-O-(3-thiotriphosphate) or okadaic acid resulted in a smaller initial ICl(Ca), and little or no current (despite a normal [Ca2+]i transient) with a second stimulation. These data indicate that CaMKII phosphorylation results in the inactivation of calcium-activated chloride channels, and that transition from the inactivated state to the closed state requires protein dephosphorylation.
Resumo:
Neuronal nitric oxide (NO) synthase (nNOS) is dynamically regulated in response to a variety of physiologic and pathologic stimuli. Although the dynamic regulation of nNOS is well established, the molecular mechanisms by which such diverse stimuli regulate nNOS expression have not yet been identified. We describe experiments demonstrating that Ca2+ entry through voltage-sensitive Ca2+ channels regulates nNOS expression through alternate promoter usage in cortical neurons and that nNOS exon 2 contains the regulatory sequences that respond to Ca2+. Deletion and mutational analysis of the nNOS exon 2 promoter reveals two critical cAMP/Ca2+ response elements (CREs) that are immediately upstream of the transcription start site. CREB binds to the CREs within the nNOS gene. Mutation of the nNOS CREs as well as blockade of CREB function results in a dramatic loss of nNOS transcription. These findings suggest that nNOS is a Ca2+-regulated gene through the interactions of CREB on the CREs within the nNOS exon 2 promoter and that these interactions are likely to be centrally involved in the regulation of nNOS in response to neuronal injury and activity-dependent plasticity.
Resumo:
Membrane depolarization of NG108 cells gives rapid (< 5 min) activation of Ca2+/calmodulin-dependent protein kinase IV (CaM-KIV), as well as activation of c-Jun N-terminal kinase (JNK). To investigate whether the Ca2+-dependent activation of mitogen-activated protein kinases (ERK, JNK, and p38) might be mediated by the CaM kinase cascade, we have transfected PC12 cells, which lack CaM-KIV, with constitutively active mutants of CaM kinase kinase and/or CaM-KIV (CaM-KKc and CaM-KIVc, respectively). In the absence of depolarization, CaM-KKc transfection had no effect on Elk-dependent transcription of a luciferase reporter gene, whereas CaM-KIVc alone or in combination with CaM-KKc gave 7- to 10-fold and 60- to 80-fold stimulations, respectively, which were blocked by mitogen-activated protein (MAP) kinase phosphatase cotransfection. When epitope-tagged constructs of MAP kinases were co-transfected with CaM-KKc plus CaM-KIVc, the immunoprecipitated MAP kinases were activated 2-fold (ERK-2) and 7- to 10-fold (JNK-1 and p38). The JNK and p38 pathways were further investigated using specific c-Jun or ATF2-dependent transcriptional assays. We found that c-Jun/ATF2-dependent transcriptions were enhanced 7- to 10-fold by CaM-KIVc and 20- to 30-fold by CaM-KKc plus CaM-KIVc. In the case of the Jun-dependent transcription, this effect was not due to direct phosphorylation of c-Jun by activated CaM-KIV, since transcription was blocked by a dominant-negative JNK and by two MAP kinase phosphatases. Mutation of the phosphorylation site (Thr196) in CaM-KIV, which mediates its activation by CaM-KIV kinase, prevented activation of Elk-1, c-Jun, and ATF2 by the CaM kinase cascade. These results establish a new Ca2+-dependent mechanism for regulating MAP kinase pathways and resultant transcription.
Resumo:
The alpha subunit of type II calcium/calmodulin-dependent protein kinase (CAM II kinase-alpha) plays an important role in longterm synaptic plasticity. We applied preembedding immunocytochemistry (for CAM II kinase-alpha) and postembedding immunogold labeling [for glutamate or gamma-aminobutyric acid (GABA)] to explore the subcellular relationships between transmitter-defined axon terminals and the kinase at excitatory and inhibitory synapses in thalamus and cerebral cortex. Many (but not all) axon terminals ending in asymmetric synapses contained presynaptic CAM II kinase-alpha immunoreactivity; GABAergic terminals ending in symmetric synapses did not. Postsynaptically, CAM II kinase-alpha immunoreactivity was associated with postsynaptic densities of many (but not all) glutamatergic axon terminals ending on excitatory neurons. CAM II kinase-alpha immunoreactivity was absent at postsynaptic densities of all GABAergic synapses. The findings show that CAM II kinase-alpha is selectively expressed in subpopulations of excitatory neurons and, to our knowledge, demonstrate for the first time that it is only associated with glutamatergic terminals pre- and postsynaptically. CAM II kinase-alpha is unlikely to play a role in plasticity at GABAergic synapses.
Resumo:
We describe a protease, named "thiocalsin," that is activated by calcium but only after reductive activation by thioredoxin, a small protein with a redox-active disulfide group that functions widely in regulation. Thiocalsin appeared to be a 14-kDa serine protease that functions independently of calmodulin. The enzyme, purified from germinating wheat grain, specifically cleaved the major indigenous storage proteins, gliadins and glutenins, after they too had been reduced, preferentially by thioredoxin. The disulfide groups of the enzyme, as well as its protein substrates, were reduced by thioredoxin via NADPH and the associated enzyme, NADP-thioredoxin reductase. The results broaden the roles of thioredoxin and calcium and suggest a joint function in activating thiocalsin, thereby providing amino acids for germination and seedling development.
Resumo:
The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.
Resumo:
Ca(2+)-sensitive kinases are thought to play a role in long-term potentiation (LTP). To test the involvement of Ca2+/calmodulin-dependent kinase II (CaM-K II), truncated, constitutively active form of this kinase was directly injected into CA1 hippocampal pyramidal cells. Inclusion of CaM-K II in the recording pipette resulted in a gradual increase in the size of excitatory postsynaptic currents (EPSCs). No change in evoked responses occurred when the pipette contained heat-inactivated kinase. The effects of CaM-K II mimicked several features of LTP in that it caused a decreased incidence of synaptic failures, an increase in the size of spontaneous EPSCs, and an increase in the amplitude of responses to iontophoretically applied alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate. To determine whether the CaM-K II-induced enhancement and LTP share a common mechanism, occlusion experiments were carried out. The enhancing action of CaM-K II was greatly diminished by prior induction of LTP. In addition, following the increase in synaptic strength by CaM-K II, tetanic stimulation failed to evoke LTP. These findings indicate that CaM-K II alone is sufficient to augment synaptic strength and that this enhancement shares the same underlying mechanism as the enhancement observed with LTP.
Resumo:
K+ channels, which have been linked to regulation of electrogenic solute transport as well as Ca2+ influx, represent a locus in hepatocytes for the concerted actions of hormones that employ Ca2+ and cAMP as intracellular messengers. Despite considerable study, the single-channel basis for synergistic effects of Ca2+ and cAMP on hepatocellular K+ conductance is not well understood. To address this question, patch-clamp recording techniques were applied to a model liver cell line, HTC hepatoma cells. Increasing the cytosolic Ca2+ concentration ([Ca2+]i) in HTC cells, either by activation of purinergic receptors with ATP or by inhibition of intracellular Ca2+ sequestration with thapsigargin, activated low-conductance (9-pS) K+ channels. Studies with excised membrane patches suggested that these channels were directly activated by Ca2+. Exposure of HTC cells to a permeant cAMP analog, 8-(4-chlorophenylthio)-cAMP, also activated 9-pS K+ channels but did not change [Ca2+]i. In excised membrane patches, cAMP-dependent protein kinase (the downstream effector of cAMP) activated K+ channels with conductance and selectivity identical to those of channels activated by Ca2+. In addition, cAMP-dependent protein kinase activated a distinct K+ channel type (5 pS). These data represent the differential regulation of low-conductance K+ channels by signaling pathways mediated by Ca2+ and cAMP. Moreover, since low-conductance Ca(2+)-activated K+ channels have been identified in a variety of cell types, these findings suggest that differential regulation of K+ channels by hormones with distinct signaling pathways may provide a mechanism for hormonal control of solute transport and Ca(2+)-dependent cellular functions in the liver as well as other nonexcitable tissues.
Resumo:
Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca2+ and Ca2+/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca(2+)-binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca(2+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca2+/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca(2+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approximately 56 kDa) binds calmodulin in a Ca(2+)-dependent manner. Furthermore, 45Ca-binding assays revealed that CCaMK directly binds Ca2+. The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca2+ signaling in plants.
Resumo:
Calcium (Ca2+) is a known important second messenger. Calcium/Calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) is a crucial kinase in the calcium signaling cascade. Activated by Ca2+/CaM, CaMKK2 can phosphorylate other CaM kinases and AMP-activated protein kinase (AMPK) to regulate cell differentiation, energy balance, metabolism and inflammation. Outside of the brain, CaMKK2 can only be detected in hematopoietic stem cells and progenitors, and in the subsets of mature myeloid cells. CaMKK2 has been noted to facilitate tumor cell proliferation in prostate cancer, breast cancer, and hepatic cancer. However, whethter CaMKK2 impacts the tumor microenvironment especially in hematopoietic malignancies remains unknown. Due to the relevance of myeloid cells in tumor growth, we hypothesized that CaMKK2 has a critical role in the tumor microenvironment, and tested this hyopothesis in murine models of hematological and solid cancer malignancies.
We found that CaMKK2 ablation in the host suppressed the growth of E.G7 murine lymphoma, Vk*Myc myeloma and E0771 mammary cancer. The selective ablation of CaMKK2 in myeloid cells was sufficient to restrain tumor growth, of which could be reversed by CD8 cell depletion. In the lymphoma microenvironment, ablating CaMKK2 generated less myeloid-derived suppressor cells (MDSCs) in vitro and in vivo. Mechanistically, CaMKK2 deficient dendritic cells showed higher Major Histocompatibility Class II (MHC II) and costimulatory factor expression, higher chemokine and IL-12 secretion when stimulated by LPS, and have higher potent in stimulating T-cell activation. AMPK, an anti-inflammatory kinase, was found as the relevant downstream target of CaMKK2 in dendritic cells. Treatment with CaMKK2 selective inhibitor STO-609 efficiently suppressed E.G7 and E0771 tumor growth, and reshaped the tumor microenvironment by attracting more immunogenic myeloid cells and infiltrated T cells.
In conclusion, we demonstrate that CaMKK2 expressed in myeloid cells is an important checkpoint in tumor microenvironment. Ablating CaMKK2 suppresses lymphoma growth by promoting myeloid cells development thereby decreasing MDSCs while enhancing the anti-tumor immune response. CaMKK2 inhibition is an innovative strategy for cancer therapy through reprogramming the tumor microenvironment.
Resumo:
Repetitive Ca2+ transients in dendritic spines induce various forms of synaptic plasticity by transmitting information encoded in their frequency and amplitude. CaMKII plays a critical role in decoding these Ca2+ signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ decoding in spines remain elusive. Here, I measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. This signal integration, at the time scale of seconds, critically depended on Thr286 phosphorylation. In the absence of Thr286 phosphorylation, only by increasing the frequency of repetitive Ca2+ elevations could high peak CaMKII activity or plasticity be induced. In addition, I measured the association between CaMKII and Ca2+/CaM during spine plasticity induction. Unlike CaMKII activity, association of Ca2+/CaM to CaMKII plateaued at the first Ca2+ elevation event. This result indicated that integration of Ca2+ signals was initiated by the binding of Ca2+/CaM and amplified by the subsequent increases in Thr286-phosphorylated form of CaMKII. Together, these findings demonstrate that CaMKII functions as a leaky integrator of repetitive Ca2+ signals during the induction of synaptic plasticity, and that Thr286 phosphorylation is critical for defining the frequencies of such integration.
Resumo:
Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.
Resumo:
Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.
Resumo:
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+)) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.