887 resultados para Café Shop
Resumo:
The paper presents an improved version of the greedy open shop approximation algorithm with pre-ordering of jobs. It is shown that the algorithm compares favorably with the greedy algorithm with no pre-ordering by reducing either its absolute or relative error. In the case of three machines, the new algorithm creates a schedule with the makespan that is at most 3/2 times the optimal value.
Resumo:
We consider two “minimum”NP-hard job shop scheduling problems to minimize the makespan. In one of the problems every job has to be processed on at most two out of three available machines. In the other problem there are two machines, and a job may visit one of the machines twice. For each problem, we define a class of heuristic schedules in which certain subsets of operations are kept as blocks on the corresponding machines. We show that for each problem the value of the makespan of the best schedule in that class cannot be less than 3/2 times the optimal value, and present algorithms that guarantee a worst-case ratio of 3/2.
Resumo:
This paper considers the problem of sequencing n jobs in a two‐machine re‐entrant shopwith the objective of minimizing the maximum completion time. The shop consists of twomachines, M1 and M2 , and each job has the processing route (M1 , M2 , M1 ). An O(n log n)time heuristic is presented which generates a schedule with length at most 4/3 times that ofan optimal schedule, thereby improving the best previously available worst‐case performanceratio of 3/2.
Resumo:
This paper considers the problem of minimizing the schedule length of a two-machine shop in which not only can a job be assigned any of the two possible routes, but also the processing times depend on the chosen route. This problem is known to be NP-hard. We describe a simple approximation algorithm that guarantees a worst-case performance ratio of 2. We also present some modifications to this algorithm that improve its performance and guarantee a worst-case performance ratio of 3=2.
Resumo:
The paper considers the three‐machine open shop scheduling problem to minimize themakespan. It is assumed that each job consists of at most two operations, one of which is tobe processed on the bottleneck machine, the same for all jobs. A new lower bound on theoptimal makespan is derived, and a linear‐time algorithm for finding an optimalnon‐preemptive schedule is presented.
Resumo:
The paper considers the job shop scheduling problem to minimize the makespan. It is assumed that each job consists of at most two operations, one of which is to be processed on one of m⩾2 machines, while the other operation must be performed on a single bottleneck machine, the same for all jobs. For this strongly NP-hard problem we present two heuristics with improved worst-case performance. One of them guarantees a worst-case performance ratio of 3/2. The other algorithm creates a schedule with the makespan that exceeds the largest machine workload by at most the length of the largest operation.
Resumo:
This paper studies the problem of scheduling jobs in a two-machine open shop to minimize the makespan. Jobs are grouped into batches and are processed without preemption. A batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. For this NP-hard problem, we propose a linear-time heuristic algorithm that creates a group technology schedule, in which no batch is split into sub-batches. We demonstrate that our heuristic is a -approximation algorithm. Moreover, we show that no group technology algorithm can guarantee a worst-case performance ratio less than 5/4.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimise the makespan, provided that preemption is not allowed and the interstage transportation times are involved. In general, this problem is known to be NP-hard. We present a linear time algorithm that finds an optimal schedule if no transportation time exceeds the smallest of the processing times. We also describe an algorithm that creates a heuristic solution to the problem with job-independent transportation times. Our algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are equal.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimize the makespan, provided that preemption is not allowed and the interstage transportation times are involved. This problem is known to be unary NP-hard. We present an algorithm that requires O (n log n) time and provides a worst-case performance ratio of 3/2.
Resumo:
We study the special case of the m machine flow shop problem in which the processing time of each operation of job j is equal to pj; this variant of the flow shop problem is known as the proportionate flow shop problem. We show that for any number of machines and for any regular performance criterion we can restrict our search for an optimal schedule to permutation schedules. Moreover, we show that the problem of minimizing total weighted completion time is solvable in O(n2) time. © 1998 John Wiley & Sons, Ltd.
Resumo:
This paper considers a special class of flow-shop problems, known as the proportionate flow shop. In such a shop, each job flows through the machines in the same order and has equal processing times on the machines. The processing times of different jobs may be different. It is assumed that all operations of a job may be compressed by the same amount which will incur an additional cost. The objective is to minimize the makespan of the schedule together with a compression cost function which is non-decreasing with respect to the amount of compression. For a bicriterion problem of minimizing the makespan and a linear cost function, an O(n log n) algorithm is developed to construct the Pareto optimal set. For a single criterion problem, an O(n2) algorithm is developed to minimize the sum of the makespan and compression cost. Copyright © 1999 John Wiley & Sons, Ltd.
Resumo:
The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.
Resumo:
We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.