958 resultados para Cadeias de Markov. Algoritmos genéticos
Resumo:
Os modelos não lineares de séries de tempo são aqui utilizados para verificar diferentes problemas de natureza macroeconômica nas variáveis brasileiras. Em relação ao comércio exterior, é estimado um mecanismo de correção de erros para a demanda de importações e os regimes caracterizados pelo modelo coincidem com os movimentos históricos. Para ajustes estruturais nas contas externas são utilizados dados anuais que caracterizam três regimes, identificados como períodos em que a economia brasileira estava sob um regime de fechamento, abertura moderada ou de abertura consistente. Já no caso da análise conjuntural, feita a partir de dados trimestrais, os períodos foram caracterizados como sendo de queda e de crescimento das importações. A metodologia de mudança de regime markoviano também é utilizada para verificar o ciclo dos negócios na produção industrial de seis estados brasileiros. Neste caso, são estimados modelos univariados e multivariados, formulados a partir de um vetor autoregressivo com mudança de regime. As estimativas mostram que existe uma diferença de comportamento na taxa de crescimento e de queda na produção entre os estados do Sul comparativamente aos três maiores do Sudeste. Vale ressaltar que este resultado significa que existe uma duração dos ciclos que também difere entre estas duas regiões Por fim, a metodologia de mudança de regime é utilizada em um modelo de fator dinâmico com o intuito de construir um indicador coincidente para a produção industrial no Rio Grande do Sul. O índice estimado assemelha-se ao calculado pela Federação das Indústrias do Estado do Rio Grande do Sul a partir de uma média ponderada de cinco variáveis pesquisadas pela instituição. Os resultados mostram que existe uma assimetria no ciclo dos negócios na indústria de transformação do estado, com uma duração maior para períodos de queda da atividade no setor.
Resumo:
Este trabalho estuda um tema relativamente recente na literatura econômica conhecido por contágio. Utilizando-se de modelos de mudança de regime markoviana multivariados (MS e MSGARCH) faz-se um estudo do comportamento das correlações ao longo do tempo entre alguns mercados de ações. Vale dizer, as correlações entre mercados de ações latino-americanos (Brasil, Argentina e México) e entre mercados asiáticos (Tailândia, Malásia e Coréia do Sul). O período abrangido pela amostra vai de janeiro de 1994 a início de janeiro de 2002, cobrindo, assim, as crises econômico-financeiras vivenciadas a partir de meados da década de noventa (a crise mexicana, em 1994/95, a crise asiática, em 1997, a crise russa, em 1998, e a crise brasileira, em 1999). A análise do comportamento das correlações ao longo do tempo mostrou que, para os mercados latino-americanos não houve evidência de contágio no período considerado, e sim, interdependência entre eles. Por outro lado, para os mercados de ações asiáticos, constatou-se a ocorrência de contágio entre os mercados tailandês e coreano e entre os mercados malaio e coreano.
Resumo:
Apresenta métodos quantitativos próprios para a discriminação entre grupos, baseados em Análise Discriminante Linear, Regressão Logística, Redes Neurais e Algoritmos Genéticos, dentro do contexto do problema da análise de crédito.
Resumo:
Esta dissertação procura promover uma análise da mudança de regimes na volatilidade condicional do risco Brasil, após a implementação do Real, com ênfase nas mudanças markovianas de regimes. De acordo com a literatura de risco país, na presença de equilíbrios múltiplos e profecias auto-realizáveis, a deterioração dos fundamentos percebidos de um país é condição necessária para a determinação de um equilíbrio macroeconômico ruim de uma pequena economia aberta e em desenvolvimento (PEAD), com reversão de capitais, alto serviço da dívida pública, perspectivas sombrias de crescimento e uma avaliação do crédito como ruim (Razin & Sadka, 2001). Ainda que tal condição seja necessária, ela não parece ser suficiente para explicar por que, em alguns momentos, apesar de um nível alto de risco país, o equilíbrio tido como ruim não se materializa. Neste sentido, através da adaptação de um jogo típico de modelos de crises cambiais de segunda geração, esta dissertação lança a hipótese de que uma das razões pelas quais uma PEAD sofra tais crises de liquidez seja a deterioração da média dos fundamentos percebidos ao lado do aumento do medo dos investidores de que haja interrupções no fluxo de capitais. A metodologia utilizada é a dos modelos GARCH nãolineares com componentes observáveis e não observáveis markovianos, aplicados à série diária do risco país do Brasil entre maio de 1994 a setembro de 2002. Os resultados empíricos sugerem que, de fato, durante os episódios de crise de liquidez do Brasil, o risco país sobe e a volatilidade muda para um regime mais alto. Em contrapartida, nos períodos com regimes baixos de volatilidade, independentemente do nível do risco país, nenhuma crise severa e repentina atinge o país. Além disso, ainda que não desprovida de limitações, a análise da volatilidade condicional do risco país pode servir como um instrumento prático de monitoramento da duração de crises de liquidez para uma PEAD altamente dependente do influxo de capitais externos como o Brasil.
Resumo:
Na modelagem de sistemas complexos, abordagens analíticas tradicionais com equações diferenciais muitas vezes resultam em soluções intratáveis. Para contornar este problema, Modelos Baseados em Agentes surgem como uma ferramenta complementar, onde o sistema é modelado a partir de suas entidades constituintes e interações. Mercados Financeiros são exemplos de sistemas complexos, e como tais, o uso de modelos baseados em agentes é aplicável. Este trabalho implementa um Mercado Financeiro Artificial composto por formadores de mercado, difusores de informações e um conjunto de agentes heterogêneos que negociam um ativo através de um mecanismo de Leilão Duplo Contínuo. Diversos aspectos da simulação são investigados para consolidar sua compreensão e assim contribuir com a concepção de modelos, onde podemos destacar entre outros: Diferenças do Leilão Duplo Contínuo contra o Discreto; Implicações da variação do spread praticado pelo Formador de Mercado; Efeito de Restrições Orçamentárias sobre os agentes e Análise da formação de preços na emissão de ofertas. Pensando na aderência do modelo com a realidade do mercado brasileiro, uma técnica auxiliar chamada Simulação Inversa, é utilizada para calibrar os parâmetros de entrada, de forma que trajetórias de preços simulados resultantes sejam próximas à séries de preços históricos observadas no mercado.
Algoritmo genético para seleção de contingências na análise estática de segurança em redes elétricas
Resumo:
O presente trabalho analisa soluções de controlo não-linear baseadas em Redes Neuronais e apresenta a sua aplicação a um caso prático, desde o algoritmo de treino até à implementação física em hardware. O estudo inicial do estado da arte da utilização das Redes Neuronais para o controlo leva à proposta de soluções iterativas para a definição da arquitectura das mesmas e para o estudo das técnicas de Regularização e Paragem de Treino Antecipada, através dos Algoritmos Genéticos e à proposta de uma forma de validação dos modelos obtidos. Ao longo da tese são utilizadas quatro malhas para o controlo baseado em modelos, uma das quais uma contribuição original, e é implementado um processo de identificação on-line, tendo por base o algoritmo de treino Levenberg-Marquardt e a técnica de Paragem de Treino Antecipada que permite o controlo de um sistema, sem necessidade de recorrer ao conhecimento prévio das suas características. O trabalho é finalizado com um estudo do hardware comercial disponível para a implementação de Redes Neuronais e com o desenvolvimento de uma solução de hardware utilizando uma FPGA. De referir que o trabalho prático de teste das soluções apresentadas é realizado com dados reais provenientes de um forno eléctrico de escala reduzida.
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth