895 resultados para Cadeias de Markov Homogêneas e Não-Homogêneas
Resumo:
We address risk minimizing option pricing in a regime switching market where the floating interest rate depends on a finite state Markov process. The growth rate and the volatility of the stock also depend on the Markov process. Using the minimal martingale measure, we show that the locally risk minimizing prices for certain exotic options satisfy a system of Black-Scholes partial differential equations with appropriate boundary conditions. We find the corresponding hedging strategies and the residual risk. We develop suitable numerical methods to compute option prices.
Resumo:
This paper studies the long-time behavior of the empirical distribution of age and normalized position of an age-dependent supercritical branching Markov process. The motion of each individual during its life is a random function of its age. It is shown that the empirical distribution of the age and the normalized position of all individuals alive at time t converges as t -> infinity to a deterministic product measure.
Resumo:
We develop in this article the first actor-critic reinforcement learning algorithm with function approximation for a problem of control under multiple inequality constraints. We consider the infinite horizon discounted cost framework in which both the objective and the constraint functions are suitable expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal policy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.
Resumo:
We study the distribution of residence time or equivalently that of "mean magnetization" for a family of Gaussian Markov processes indexed by a positive parameter alpha. The persistence exponent for these processes is simply given by theta=alpha but the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as theta increases, indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution for arbitrary alpha. For some special values of alpha, we obtain closed form expressions of the distribution function. [S1063-651X(99)03306-1].
Resumo:
The existence of an optimal feedback law is established for the risk-sensitive optimal control problem with denumerable state space. The main assumptions imposed are irreducibility and a near monotonicity condition on the one-step cost function. A solution can be found constructively using either value iteration or policy iteration under suitable conditions on initial feedback law.
Resumo:
Backoff algorithms are typically employed in multiple-access networks (e.g., Ethernet) to recover from packet collisions. In this letter, we propose and carry out the analysis for three types of link-layer backoff schemes, namely, linear backoff, exponential backoff, and geometric backoff, on point-to-point wireless fading links where packet errors occur nonindependently. In such a scenario, the backoff schemes are shown to achieve better energy efficiency without compromising much on the link layer throughput performance.
Resumo:
We develop a simulation based algorithm for finite horizon Markov decision processes with finite state and finite action space. Illustrative numerical experiments with the proposed algorithm are shown for problems in flow control of communication networks and capacity switching in semiconductor fabrication.
Resumo:
In this paper, we analyze the throughput and energy efficiency performance of user datagram protocol (UDP) using linear, binary exponential, and geometric backoff algorithms at the link layer (LL) on point-to-point wireless fading links. Using a first-order Markov chain representation of the packet success/failure process on fading channels, we derive analytical expressions for throughput and energy efficiency of UDP/LL with and without LL backoff. The analytical results are verified through simulations. We also evaluate the mean delay and delay variation of voice packets and energy efficiency performance over a wireless link that uses UDP for transport of voice packets and the proposed backoff algorithms at the LL. We show that the proposed LL backoff algorithms achieve energy efficiency improvement of the order of 2-3 dB compared to LL with no backoff, without compromising much on the throughput and delay performance at the UDP layer. Such energy savings through protocol means will improve the battery life in wireless mobile terminals.
Resumo:
We address the problem of pricing defaultable bonds in a Markov modulated market. Using Merton's structural approach we show that various types of defaultable bonds are combination of European type contingent claims. Thus pricing a defaultable bond is tantamount to pricing a contingent claim in a Markov modulated market. Since the market is incomplete, we use the method of quadratic hedging and minimal martingale measure to derive locally risk minimizing derivative prices, hedging strategies and the corresponding residual risks. The price of defaultable bonds are obtained as solutions to a system of PDEs with weak coupling subject to appropriate terminal and boundary conditions. We solve the system of PDEs numerically and carry out a numerical investigation for the defaultable bond prices. We compare their credit spreads with some of the existing models. We observe higher spreads in the Markov modulated market. We show how business cycles can be easily incorporated in the proposed framework. We demonstrate the impact on spreads of the inclusion of rare states that attempt to capture a tight liquidity situation. These states are characterized by low risk-free interest rate, high payout rate and high volatility.
Resumo:
We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.
Resumo:
We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.
Resumo:
From the analysis of experimentally observed variations in surface strains with loading in reinforced concrete beams, it is noted that there is a need to consider the evolution of strains (with loading) as a stochastic process. Use of Markov Chains for modeling stochastic evolution of strains with loading in reinforced concrete flexural beams is studied in this paper. A simple, yet practically useful, bi-level homogeneous Gaussian Markov Chain (BLHGMC) model is proposed for determining the state of strain in reinforced concrete beams. The BLHGMC model will be useful for predicting behavior/response of reinforced concrete beams leading to more rational design.
Resumo:
Given the increasing cost of designing and building new highway pavements, reliability analysis has become vital to ensure that a given pavement performs as expected in the field. Recognizing the importance of failure analysis to safety, reliability, performance, and economy, back analysis has been employed in various engineering applications to evaluate the inherent uncertainties of the design and analysis. The probabilistic back analysis method formulated on Bayes' theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis-Hastings algorithm has proved to be highly efficient to address this issue. It is also quite flexible and is applicable to any type of prior information. In this paper, this method has been used to back-analyze the parameters that influence the pavement life and to consider the uncertainty of the mechanistic-empirical pavement design model. The load-induced pavement structural responses (e.g., stresses, strains, and deflections) used to predict the pavement life are estimated using the response surface methodology model developed based on the results of linear elastic analysis. The failure criteria adopted for the analysis were based on the factor of safety (FOS), and the study was carried out for different sample sizes and jumping distributions to estimate the most robust posterior statistics. From the posterior statistics of the case considered, it was observed that after approximately 150 million standard axle load repetitions, the mean values of the pavement properties decrease as expected, with a significant decrease in the values of the elastic moduli of the expected layers. An analysis of the posterior statistics indicated that the parameters that contribute significantly to the pavement failure were the moduli of the base and surface layer, which is consistent with the findings from other studies. After the back analysis, the base modulus parameters show a significant decrease of 15.8% and the surface layer modulus a decrease of 3.12% in the mean value. The usefulness of the back analysis methodology is further highlighted by estimating the design parameters for specified values of the factor of safety. The analysis revealed that for the pavement section considered, a reliability of 89% and 94% can be achieved by adopting FOS values of 1.5 and 2, respectively. The methodology proposed can therefore be effectively used to identify the parameters that are critical to pavement failure in the design of pavements for specified levels of reliability. DOI: 10.1061/(ASCE)TE.1943-5436.0000455. (C) 2013 American Society of Civil Engineers.