147 resultados para CYP%!
Resumo:
Purpose. The aims of this study are to evaluate whether cytochrome P450 (CYP)2D1/2D2-deficient dark agouti (DA) rats and/or CYP2D1/2D2-replete Sprague-Dawley (SD) rats are suitable preclinical models of the human, with respect to mirroring the very low plasma concentrations of metabolically derived oxymorphone seen in humans following oxycodone administration, and to examine the effects of streptozotocin-induced diabetes on the pharmacokinetics of oxycodone and its metabolites, noroxycodone and oxymorphone, in both rodent strains. Methods. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to quantify the serum concentrations of oxycodone, noroxycodone, and oxymorphone following subcutaneous administration of bolus doses of oxycodone (2 mg/kg) to groups of nondiabetic and diabetic rats. Results. The mean (+/- SEM) areas under the serum concentration vs. time curves for oxycodone and noroxycodone were significantly higher in DA relative to SD rats (diabetic, p < 0.05; nondiabetic, p < 0.005). Serum concentrations of oxymorphone were very low (< 6.9 nM). Conclusions. Both DA and SD rats are suitable rodent models to study oxycodone's pharmacology, as their systemic exposure to metabolically derived oxymorphone (potent mu-opioid agonist) is very low, mirroring that seen in humans following oxycodone administration. Systemic exposure to oxycodone and noroxycodone was consistently higher for DA than for SD rats showing that strain differences predominated over diabetes status.
Resumo:
Relaxation of the upper age limits for solid organ transplantation coupled with improvements in post-transplant survival have resulted in greater numbers of elderly patients receiving immunosuppressant drugs such as tacrolimus. Tacrolimus is a potent agent with a narrow therapeutic window and large inter- and intraindividual pharmacokinetic variability. Numerous physiological changes occur with aging that could potentially affect the pharmacokinetics of tacrolimus and, hence, patient dosage requirements. Tacrolimus is primarily metabolised by cytochrome P450 (CYP) 3A enzymes in the gut wall and liver. It is also a substrate for P-glycoprotein, which counter-transports diffused tacrolimus out of intestinal cells and back into the gut lumen. Age-associated alterations in CYP3A and P-glycoprotein expression and/or activity, along with liver mass and body composition changes, would be expected to affect the pharmacokinetics of tacrolimus in the elderly. However, interindividual variation in these processes may mask any changes caused by aging. More investigation is needed into the impact aging has on CYP and P-glycoprotein activity and expression. No single-dose, intense blood-sampling study has specifically compared the pharmacokinetics of tacrolimus across different patient age groups. However, five population pharmacokinetic studies, one in kidney, one in bone marrow and three in liver transplant recipients, have investigated age as a co-variate. None found a significant influence for age on tacrolimus bioavailability, volume of distribution or clearance. The number of elderly patients included in each study, however, was not documented and may have been only small. It is likely that inter- and intraindividual pharmacokinetic variability associated with tacrolimus increase in elderly populations. In addition to pharmacokinetic differences, donor organ viability, multiple co-morbidity, polypharmacy and immunological changes need to be considered when using tacrolimus in the elderly. Aging is associated with decreased immunoresponsiveness, a slower body repair process and increased drug adverse effects. Elderly liver and kidney transplant recipients are more likely to develop new-onset diabetes mellitus than younger patients. Elderly transplant recipients exhibit higher mortality from infectious and cardiovascular causes than younger patients but may be less likely to develop acute rejection. Elderly kidney recipients have a higher potential for chronic allograft nephropathy, and a single rejection episode can be more devastating. There is a paucity of information on optimal tacrolimus dosage and target trough concentration in the elderly. The therapeutic window for tacrolimus concentrations may be narrower. Further integrated pharmacokinetic-pharmaco-dynamic studies of tacrolimus are required. It would appear reasonable, based on current knowledge, to commence tacrolimus at similar doses as those used in younger patients. Maintenance dose requirements over the longer term may be lower in the elderly, but the increased variability in kinetics and the variety of factors that impact on dosage suggest that patient care needs to be based around more frequent monitoring in this age group.
Resumo:
In this study, the human cytochrome P450 (CYP) 2A6 was used in order to modify the alkaloid production of tobacco plants. The cDNA for human CYP2A6 was placed under the control of the constitutive 35S promoter and transferred into Nicotiana tabacum via Agrobacterium-mediated transformation. Transgenic plants showed formation of the recombinant CYP2A6 enzyme but no obvious phenotypic changes. Unlike wild-type tobacco, the transgenic plants accumulated cotinine, a metabolite which is usually formed from nicotine in humans. This result substantiates that metabolic engineering of the plant secondary metabolism via mammalian P450 enzymes is possible in vivo. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Oxidative metabolism of bilirubin (BR) - a breakdown product of haem with cytoprotective and toxic properties - is an important route of detoxification in addition to glucuronidation. The major enzyme(s) involved in this oxidative degradation are not known. In this paper, we present evidence for a major role of the hepatic cytochrome P450 2A5 (Cyp2a5) in BR degradation during cadmium intoxication, where the BR levels are elevated following induction of haem oxygenase-1 (HO-1). Treatment of DBA/2J mice with CdCl2 induced both the Cyp2a5 and HO-1, and increased the microsomal BR degradation activity. By contrast, the total cytochrome P450 (CYP) content and the expression of Cyp1a2 were down-regulated by the treatment. The induction of the HO-1 and Cyp2a5 was substantial at the mRNA, protein and enzyme activity levels. In each case, the up-regulation of HO-1 preceded that of Cyp2a5 with a 5-10 h interval. BR totally inhibited the microsomal Cyp2a5-dependent coumarin hydroxylase activity, with an IC50 approximately equal to the substrate concentration. The 7-methoxyresorufin 7-O-demethylase (MROD) activity, catalyzed mainly by the Cyp1a2, was inhibited up to 36% by BR. The microsomal BR degradation was inhibited by coumarin and a monoclonal antibody against the Cyp2a5 by about 90%. Furthermore, 7-methoxyresorufin, a substrate for the Cyp1a2, inhibited BR degradation activity by approximately 20%. In sum, the results strongly suggest a major role for Cyp2a5 in the oxidative degradation of BR. Secondly, the coordinated up-regulation of the HO-1 and Cyp2a5 during Cd-mediated injury implicates a network of enzyme systems in the maintenance of balancing BR production and elimination.
Resumo:
To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (K-I and k(inact)) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (K-I and k(inact)) for isoniazid were 48.6 mu M and 0.042 min(-1) and 79.3 mu M and 0.039 min(-1). Clorgyline was a selective inactivator of CYP1A2 (6.8 mu M and 0.15 min(-1)). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.
Resumo:
Aquatic toxins are responsible for a number of acute and chronic diseases in humans. Okadaic acid (OA) and other dinoflagellate derived polyketide toxins pose serious health risks on a global scale. Ingestion of OA contaminated shellfish causes diarrheic shellfish poisoning (DSP). Some evidence also suggests tumor promotion in the liver by OA. Microcystin-LR (MC-LR) is produced by cyanobacteria and is believed to be the most common freshwater toxin in the US. Humans may be exposed to this acute hepatotoxin through drinking or recreational use of contaminated waters. ^ OA producing dinoflagellates have not been cultured axenically. The presence of associated bacteria raises questions about the ultimate source of OA. Identification of the toxin-producing organism(s) is the first step in identifying the biosynthetic pathways involved in toxin production. Polyketide synthase (PKS) genes of toxic and non-toxic species were surveyed by construction of clonal libraries from PCR amplicons of various toxic and non-toxic species of Prorocentrum in an effort to identify genes, which may be part of the biosynthetic pathway of OA. Analysis of the PKS sequences revealed that toxic species shared identical PKS genes not present in non-toxic species. Interestingly, the same PKS genes were identified in a library constructed from associated bacteria. ^ Subsequent bacterial small subunit RNA (16S) clonal libraries identified several common bacterial species. The most frequent 16S sequences found were identified as species of the genus Roseobacter which has previously been implicated in the production of OA. Attempts to culture commonly occurring bacteria resulted in the isolation of Oceanicaulis alexandrii , a novel marine bacterium previously isolated from the dinoflagellate Alexandrium tamarense, from both P. lima, and P. hoffmanianum. ^ Metabolic studies of microcystin-LR, were conducted to probe the activity of the major human liver cytochromes (CYP) towards the toxin. CYPs may provide alternate routes of detoxification of toxins when the usual routes have been inhibited. For example, some research indicates that cyanobacterial xenobiotics, in particular, lipopolysaccharides may inhibit glutathione S-transferases allowing the toxin to persist long enough to be acted upon by other enzymes. These studies found that at least one human liver CYP was capable of metabolizing the toxin. ^
Resumo:
Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, LogD, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.
Resumo:
Cyclophosphamide (CYP) is an antineoplastic agent used for the treatment of many neoplastic and inflammatory diseases. Hemorrhagic cystitis is a frequent side effect of CYP. Several studies show that simvastatin has important pleiotropic (anti-inflammatory and immunomodulatory) effects. The purpose of the study was to investigate the effect of simvastatin on bladder, ureter and kidney injury caused by CYP. Methods: Adult male Wistar rats were randomly divided into three groups. The CYP/SIM group received simvastatin microemulsion by gavage during 7 days (10 mg/kg body wt) before the administration of CYP and the CYP/SAL group rats received saline 0.9%. The control rats were not treated. After that, all rats were treated with a single dose of CYP 200 mg/kg body wt intraperitoneally. The rats were killed 24 h after CYP administration. Plasma cytokines (TNF-a, IL-1b, IL-6) were measured by ELISA. Macro and light microscopic study was performed in the bladder, kidney and ureter. Results: In the bladders of CYP/SIMV treated rats edema of lamina propria with epithelial and sub-epithelial hemorrhage were lower than in CYP/SAL treated rats. The scores for macroscopic and microscopic evaluation of bladder and ureter were significantly lower in CYP/SIMV rats than in CYP/SAL rats. The kidney was not affected. The expression of TNF-a, IL-1b and IL-6 was significatly lower in CF/SINV rats (164.8±22, 44.8±8 and 52.4±13) than in CF/SAL rats (378.5±66, 122.9±26 e 123.6±18), respectively. Conclusion: The results of the current study suggest that simvastatin pretreatment attenuated CYP-induced urotelium inflammation and decreased the activities of cytokines
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Cyclophosphamide (CYP) is an antineoplastic agent used for the treatment of many neoplastic and inflammatory diseases. Hemorrhagic cystitis is a frequent side effect of CYP. Several studies show that simvastatin has important pleiotropic (anti-inflammatory and immunomodulatory) effects. The purpose of the study was to investigate the effect of simvastatin on bladder, ureter and kidney injury caused by CYP. Methods: Adult male Wistar rats were randomly divided into three groups. The CYP/SIM group received simvastatin microemulsion by gavage during 7 days (10 mg/kg body wt) before the administration of CYP and the CYP/SAL group rats received saline 0.9%. The control rats were not treated. After that, all rats were treated with a single dose of CYP 200 mg/kg body wt intraperitoneally. The rats were killed 24 h after CYP administration. Plasma cytokines (TNF-a, IL-1b, IL-6) were measured by ELISA. Macro and light microscopic study was performed in the bladder, kidney and ureter. Results: In the bladders of CYP/SIMV treated rats edema of lamina propria with epithelial and sub-epithelial hemorrhage were lower than in CYP/SAL treated rats. The scores for macroscopic and microscopic evaluation of bladder and ureter were significantly lower in CYP/SIMV rats than in CYP/SAL rats. The kidney was not affected. The expression of TNF-a, IL-1b and IL-6 was significatly lower in CF/SINV rats (164.8±22, 44.8±8 and 52.4±13) than in CF/SAL rats (378.5±66, 122.9±26 e 123.6±18), respectively. Conclusion: The results of the current study suggest that simvastatin pretreatment attenuated CYP-induced urotelium inflammation and decreased the activities of cytokines
Resumo:
We compared the effects of a single acute dose, or chronic fetal exposure, to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the male reproductive system of the Wistar(Han) rat. Tissue samples were taken from dams on GD16 and GD21, and from offspring on PND70 and 120. Steady state concentration of TCDD was demonstrated in the chronic study: body burdens were comparable in both studies. Fetal TCDD concentrations were comparable after acute and chronic exposure, and demonstrate more potent toxicity after chronic versus acute dosing. In maternal liver, cytochrome P450 (CYP)1A1 and CYP1A2 RNA were induced. In fetus, there was induction of both CYP1A1 and CYP1A2 RNA at medium and high doses, but inadequate evidence for induction at low dose in either study. The low level induction of CYP1A1 RNA at low dose in fetus argues against AhR activation in fetus as a mechanism of toxicity of TCDD in causing delay in balanopreputial separation, and the greater induction of CYP1A1 RNA in PND70 offspring liver suggests that lactational transfer of TCDD is crucial to this toxicity. These data characterise the maternal and fetal disposition of TCDD, induction of CYP1A1 RNA as a measure of AhR activation, and suggest that lactational transfer of TCDD determines the difference in delay in balanopreputial separation between the two studies.
Resumo:
In this work, we used sugarcane as a model due to its importance for sugar and ethanol production. Unlike the current plant models, sugarcane presents a complex genetics and an enormous allelic variation. Here, we report the analysis of SAGE libraries produced using the shoot apical meristem from contrasted genotypes by flowering induction (non-flowering vs. early-flowering varieties) grown under São Paulo state conditions. The expression pattern was analyzed using samples from São Paulo (SP) and Rio Grande do Norte (RN) states. These results showed that cDNAs identified by SAGE libraries had differential expression only in São Paulo state samples. Furthermore, the cDNA identified CYP (Citocrome P450) was chosen for in silico and genome characterization because it was found in SAGE libraries and subtractive libraries from samples from RN. Phylogenetic trees showed the relationship for these sequences. Furthermore, the qRT-PCR for CYP showed a potential role as flowering indutor for RN samples considering different isophorms. Considering the results present here, it can be consider that CYP gene may be used as molecular marker