961 resultados para CRYSTALLIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final structure of molten syndiotactic polypropylene (sPP) sheared under different conditions was investigated by synchrotron small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (WAXD) techniques to elucidate the shear effects on sPP crystalline structure. The results obtained from the WAXD show that there is no variation on crystalline form but a little difference on the orientation of the 200 reflection. The SAXS data indicate that the lamellar thickness and long period have not been affected by shear but the lamellar orientation is dependent on shear. The experimental data of sPP crystallization from sheared melt may indicate a mesophase structure that is crucial to the shear effects on the final polymer multiscale crystalline structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The substantial crystallization suppression of poly(3-hexylthiophene) (P3HT) in the untreated P3HT:C60 composite film prepared from o-dichlorobenzene (ODCB) solution has been revealed. Besides, the effective conjugation length of P3HT in this composite has been nearly maintained to that in the solution. The different crystallization behaviors of P3HT in its composites with C60 and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) are mainly attributed to the relative solubility of C60 and PCBM with respect to P3HT in ODCB. The solution to overcome this disadvantage of chain conformation and crystallinity of P3HT in the composite with C60 is thus proposed and finalized by resorting to the addition of low volatile solvent with much higher solubility of C60 than P3HT into the main solvent used, so as P3HT can crystallize before C60 forms crystallites in the solution. The feasibility of this approach has been proven by the improved efficiency of devices based on composites of P3HT and the low cost C60 without resorting to post-treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thin films of a symmetric crystalline-coil diblock copolymer of poly(L-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (T-g(PLLA)), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (T-c), the glass transition temperature of PS (T-g(PS)), the peak melting point of PLLA crystals (T-m(PLLA)), and the end melting point of PLLA crystals (T-m,end(PLLA)). When annealed at (T-c =) 80 degrees C (T-c < T-g(PS) < T-ODT, order-disorder transition temperature), 123 degrees C (T-g(PS) < T-c < T-m(PLLA) < T-ODT). 165 degrees C (T-g(PS) < T-m(PLLA) < T-c < T-m,end(PLLA) < T-ODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: How to promote the formation of the gamma-form in a certain propylene-ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the alpha-form and gamma-form into account, it is expected that incorporation of some extrinsic alpha-crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the gamma-form of the PPR component in PPR/PPH blends.RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first-formed alpha-crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf-like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the gamma-form of the PPR component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isothermal crystallization behavior of poly(L-lactic acid)/organo-montmorillonite nanocomposites (PLLA/OMMT) with different content of OMMT, using a kind of twice-functionalized organoclay (TFC), prepared by melt intercalation process has been investigated by optical depolarizer. In isothermal crystallization from melt, the induction periods (t(i)) and half times for overall PLLA crystallization (100 degrees C <= T-c <= 120 degrees C) were affected by the temperature and the content of TFC in nanocomposites. The kinetic of isothermal crystallization of PLLA/TFC nanocomposites was studied by Avrami theory. Also, polarized optical photomicrographs supplied a direct way to know the role of TFC in PLLA isothermal crystallization process. Wide angle X-ray diffraction (WAXD) patterns showed the nanostructure of PLLA/TFC material, and the PLLA crystalline integrality was changed as the presence of TFC. Adding TFC led to the decrease of equilibrium melting point of nanocomposites, indicating that the layered structure of clay restricted the full formation of crystalline structure of polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancing the stability of plasticized poly(L-lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under I-ray (Co-60) in the presence of triallyl isocyanurate (TALC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TALC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A notable amount of PP beta-crystal (30%, by X-ray diffraction pattern) has been found in the PP samples as polymerized at normal static isothermal crystallization conditions without using any extra nucleating agents. Existence of catalyst residues in the sample is decisive, which slows down the crystallization rate facilitating the formation of beta-form spherulites. Comparatively, high molecular weight PP favors the formation of beta-form spherulites, deducting from no beta-crystal detected in the degraded samples. Finally, high isotacticity is also required for obtaining qualitative beta-form spherulites, demonstrated by increased beta-crystal content after removal of weak crystalline fraction of the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological development and crystallization behavior of poly(epsilon-caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass-transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49 degrees C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory-Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be -3.95 J/cm(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization behaviors of poly( E-caprolactone) (PCL) in poly(epsilon-caprolactone) (PCL) and poly(vinyl methyl ether) (PVME) blends were investigated by POM, DSC, WAXD, SAXS. POM results indicated that spherical crystal morphology was present during isothermal process, and the spheric growth rates were reduced with increasing the contents of PVME in PCL/PVME blends. It was found that the crystallinity of PCL in the blends remained almost constant regardless of the blend composition, but it was dependent on preparation technique. Solution-crystallization was found to be a technique capable of increasing crystallinity levels for some compositions. The melting behavior of the blends is a rather complex process. Both solution-crystallized samples and isothermal-crystallized samples exhibited a single endotherm. Oppositely, melting-crystallized samples exhibited dual-melting endotherms whose mangnitudes vary with blend compositions. On the basis of WAXD and SAXS experiments, it is found that the crystal structure is unchanged, but the long period increases with increasing the content of PVME because of the thickening of the amorphous layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syndiotactic polystyrene (sPS) nanorods of 200 and 80 nm diameters were prepared by infiltrating porous anodic alumina oxide templates with polymer melt, and the crystallinity and orientation of various forms of sPS crystals in the nanorods were studied by FTIR spectroscopy and electron diffraction. For sPS crystallized from amorphous state at lower temperatures, a-form crystals were found in the nanorods with random orientation and the same degree of crystallinity as that in the bulk. However, for sPS crystallized from molten state at 260 degrees C, while no preferred orientation was found for the chains in the melt, the beta-crystals formed in the nanorods oriented preferentially with the c-axis aligning perpendicular to the axial direction of the nanorod, and the degree of crystallinity was significantly lower than that in the bulk. The crystallinity decrease was more profound for nanorods of smaller diameter. These results were also supported by electron diffraction data and can be attributed to competition between nucleation and crystal growth in the nanotemplates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of head-to-tail poly(3-hexylthiophene)s have been grown through the method of isothermal solution crystallization. Electron diffraction in combination with powder X-ray diffraction revealed the crystal structure, a = 1.52 nm, b = 3.36 nm, c = 1.56 nm and alpha = beta = gamma = 90 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to investigate the effect of consecutive shear on the crystallization of an amorphous aromatic polyimide (PI) derived from 3,3',4,4'oxydiphthalic dianhydride (3,3',4,4'-ODPA) and 4,4-oxydianiline (ODA). At 260 degrees C, the increase of shear rate or shear time leads to the increase of crystallinity. Indeed, increasing shear rate can also accelerate the crystallization behavior. Moreover, it was found that a new melting peak appeared at higher temperature for long time or high rate sheared sample. The enhancement of crystallization behavior appears directly linked to the increase of crystal thickness. Particularly, the effect of shear temperature was investigated, and the results revealed that the crystallization of the PI was more sensitive to shear at 260 degrees C, which was 10 degrees above the glass transition temperature (250 degrees C) of the PI. Possible mechanism was proposed to illustrate the effect of consecutive shear on the crystallization of the PI polymer.