836 resultados para CORTICAL PROJECTIONS
Resumo:
Understanding the driving forces of gene expression variation within human populations will provide important insights into the molecular basis of human phenotypic variation. In the genome, the gene expression variability differs among genes, and at prese
Resumo:
This article investigates how to use UK probabilistic climate-change projections (UKCP09) in rigorous building energy analysis. Two office buildings (deep plan and shallow plan) are used as case studies to demonstrate the application of UKCP09. Three different methods for reducing the computational demands are explored: statistical reduction (Finkelstein-Schafer [F-S] statistics), simplification using degree-day theory and the use of metamodels. The first method, which is based on an established technique, can be used as reference because it provides the most accurate information. However, it is necessary to automatically choose weather files based on F-S statistic by using computer programming language because thousands of weather files created from UKCP09 weather generator need to be processed. A combination of the second (degree-day theory) and third method (metamodels) requires only a relatively small number of simulation runs, but still provides valuable information to further implement the uncertainty and sensitivity analyses. The article also demonstrates how grid computing can be used to speed up the calculation for many independent EnergyPlus models by harnessing the processing power of idle desktop computers. © 2011 International Building Performance Simulation Association (IBPSA).
Resumo:
We simultaneously recorded auditory evoked potentials (AEP) from the temporal cortex (TCx), the dorsolateral prefrontal cortex (dPFCx) and the parietal cortex (PCx) in the freely moving rhesus monkey to investigate state-dependent changes of the AEP. AEPs obtained during passive wakefulness, active wakefulness (AW), slow wave sleep and rapid-eye-movement sleep (REM) were compared. Results showed that AEP from all three cerebral areas were modulated by brain states. However, the amplitude of AEP from dPFCx and PCx significantly appeared greater attenuation than that from the TCx during AW and REM. These results indicate that the modulation of brain state on AEP from all three cerebral areas investigated is not uniform, which suggests that different cerebral areas have differential functional contributions during sleep-wake cycle. (C) 2002 Elsevier Science Ireland Ltd.. All rights reserved.
Resumo:
Human cerebral cortical function degrades during old age. Much of this change may result from a degradation of intracortical inhibition during senescence. We used multibarreled microelectrodes to study the effects of electrophoretic application of gamma-aminobutyric acid (GABA), the GABA type a (GABAa) receptor agonist muscimol, and the GABAa receptor antagonist bicuculline, respectively, on the properties of individual V1 cells in old monkeys. Bicuculline exerted a much weaker effect on neuronal responses in old than in young animals, confirming a degradation of GABA-mediated inhibition. On the other hand, the administration of GABA and muscimol resulted in improved visual function. Many treated cells in area V1 of old animals displayed responses typical of young cells. The present results have important implications for the treatment of the sensory, motor, and cognitive declines that accompany old age.
Resumo:
Our previously observations showed that the amplitude of cortical evoked potentials to irrelevant auditory stimulus (probe) recorded from several different cerebral areas was differentially modulated by brain states. At present study, we simultaneously re
Resumo:
Human visual function declines with age. Much of this decline is mediated by changes in the central visual pathways. In this study we compared the spatial and temporal sensitivities of striate cortical cells in young and old paralysed macaque monkeys. Ext
Resumo:
A recent study demonstrates involvement of primary motor cortex in task-dependent modulation of rapid feedback responses; cortical neurons resolve locally ambiguous sensory information, producing sophisticated responses to disturbances.
Precise 3D localisation of a cortical thinning defect associated with femoral neck fracture in life.
Resumo:
There is a unidirectional, ipsilateral and monosynaptic projection from the hippocampus to the prefrontal cortex. The cognitive function of hippocampal-prefrontal cortical circuit is not well established. In this paper, we use muscimol treated rats to inv
Resumo:
Wistar rats, treated with the GABA(A) receptor agonist muscimol, were used to investigate the role of the hippocampal-prelimbic cortical (Hip-PLC) circuit in spatial learning in the Morris water maze task, and in passive avoidance learning in the step-thr
Resumo:
BACKGROUND: Individuals with osteoporosis are predisposed to hip fracture during trips, stumbles or falls, but half of all hip fractures occur in those without generalised osteoporosis. By analysing ordinary clinical CT scans using a novel cortical thickness mapping technique, we discovered patches of markedly thinner bone at fracture-prone regions in the femurs of women with acute hip fracture compared with controls. METHODS: We analysed CT scans from 75 female volunteers with acute fracture and 75 age- and sex-matched controls. We classified the fracture location as femoral neck or trochanteric before creating bone thickness maps of the outer 'cortical' shell of the intact contra-lateral hip. After registration of each bone to an average femur shape and statistical parametric mapping, we were able to visualise and quantify statistically significant foci of thinner cortical bone associated with each fracture type, assuming good symmetry of bone structure between the intact and fractured hip. The technique allowed us to pinpoint systematic differences and display the results on a 3D average femur shape model. FINDINGS: The cortex was generally thinner in femoral neck fracture cases than controls. More striking were several discrete patches of statistically significant thinner bone of up to 30%, which coincided with common sites of fracture initiation (femoral neck or trochanteric). INTERPRETATION: Femoral neck fracture patients had a thumbnail-sized patch of focal osteoporosis at the upper head-neck junction. This region coincided with a weak part of the femur, prone to both spontaneous 'tensile' fractures of the femoral neck, and as a site of crack initiation when falling sideways. Current hip fracture prevention strategies are based on case finding: they involve clinical risk factor estimation to determine the need for single-plane bone density measurement within a standard region of interest (ROI) of the femoral neck. The precise sites of focal osteoporosis that we have identified are overlooked by current 2D bone densitometry methods.
Resumo:
The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.