976 resultados para COPY NUMBER


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phylogenetic analysis of morphometric and biological characters indicated that there are two distinct forms of Lutzomyia whitmani in Brazil: one is present both north and south of the River Amazonas in the State of Pará while the other occurs in northeast Brazil, in the State of Ceará, and further south, including the type locality in State of Bahia. The Amazonian form is reportedly neither strongly anthropophilic nor synanthropic, and it is the vector of Leishmania shawi; whereas the southern form is often collected peridomestically, while biting man, and has been found infected with Le.(V.) braziliensis. The ratio of the length of the genital filaments to that the genital pump was found to be consistently smaller in males of the Amazonian populations. A middle repetitive DNA element was isolated by differentially screening a genomic library made using Amazonian material, and the sequence was diagnostic for this form of Lu. whitmani (being absent or occurring in low copy number in the southern form). The total evidence suggests there are at least two, geographically-isolated forms of Lu. whitmani, which may represent different cryptic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Somatic copy number aberrations (CNA) represent a mutation type encountered in the majority of cancer genomes. Here, we present the 2014 edition of arrayMap (http://www.arraymap.org), a publicly accessible collection of pre-processed oncogenomic array data sets and CNA profiles, representing a vast range of human malignancies. Since the initial release, we have enhanced this resource both in content and especially with regard to data mining support. The 2014 release of arrayMap contains more than 64,000 genomic array data sets, representing about 250 tumor diagnoses. Data sets included in arrayMap have been assembled from public repositories as well as additional resources, and integrated by applying custom processing pipelines. Online tools have been upgraded for a more flexible array data visualization, including options for processing user provided, non-public data sets. Data integration has been improved by mapping to multiple editions of the human reference genome, with the majority of the data now being available for the UCSC hg18 as well as GRCh37 versions. The large amount of tumor CNA data in arrayMap can be freely downloaded by users to promote data mining projects, and to explore special events such as chromothripsis-like genome patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The choice of sample preparation protocol is a critical influential factor for isoelectric focusing which in turn affects the two-dimensional gel result in terms of quality and protein species distribution. The optimal protocol varies depending on the nature of the sample for analysis and the properties of the constituent protein species (hydrophobicity, tendency to form aggregates, copy number) intended for resolution. This review explains the standard sample buffer constituents and illustrates a series of protocols for processing diverse samples for two-dimensional gel electrophoresis, including hydrophobic membrane proteins. Current methods for concentrating lower abundance proteins, by removal of high abundance proteins, are also outlined. Finally, since protein staining is becoming increasingly incorporated into the sample preparation procedure, we describe the principles and applications of current (and future) pre-electrophoretic labelling methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. METHODS: We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. RESULTS: In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. CONCLUSIONS: This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis (TB) is a major concern in developing countries. In Brazil, few genotyping studies have been conducted to verify the number of IS6110 copies present in local prevalent strains of Mycobacterium tuberculosis, the distribution and clustering of strains. IS6110 DNA fingerprinting was performed on a sample of M. tuberculosis isolates from patients with AFB smear-positive pulmonary TB, at a hospital in Brazil. The IS6110 profiles were analyzed and compared to a M. tuberculosis database of the Houston Tuberculosis Initiative, Houston, US. Seventy-six fingerprints were obtained from 98 patients. All M. tuberculosis strains had an IS6110 copy number between 5-21 allowing for differentiation of the isolates. Human immunodeficiency virus infection was confirmed in nearly half the patients of whom data was available. Fifty-eight strains had unique patterns, while 17 strains were grouped in 7 clusters (2 to 6 strains). When compared to the HTI database, 6 strains matched isolates from El Paso, Ciudad de Juarez, Houston, and New York. Recently acquired infections were documented in 19% of cases. The community transmission of infection is intense, since some clustered strains were recovered during the four-year study period. The intercontinental dissemination of M. tuberculosis strains is suspected by demonstration of identical fingerprints in a distant country.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advent and application of high-resolution array-based comparative genome hybridization (array CGH) has led to the detection of large numbers of copy number variants (CNVs) in patients with developmental delay and/or multiple congenital anomalies as well as in healthy individuals. The notion that CNVs are also abundantly present in the normal population challenges the interpretation of the clinical significance of detected CNVs in patients. In this review we will illustrate a general clinical workflow based on our own experience that can be used in routine diagnostics for the interpretation of CNVs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differences between genomes can be due to single nucleotide variants, translocations, inversions, and copy number variants (CNVs, gain or loss of DNA). The latter can range from sub-microscopic events to complete chromosomal aneuploidies. Small CNVs are often benign but those larger than 500 kb are strongly associated with morbid consequences such as developmental disorders and cancer. Detecting CNVs within and between populations is essential to better understand the plasticity of our genome and to elucidate its possible contribution to disease. Hence there is a need for better-tailored and more robust tools for the detection and genome-wide analyses of CNVs. While a link between a given CNV and a disease may have often been established, the relative CNV contribution to disease progression and impact on drug response is not necessarily understood. In this review we discuss the progress, challenges, and limitations that occur at different stages of CNV analysis from the detection (using DNA microarrays and next-generation sequencing) and identification of recurrent CNVs to the association with phenotypes. We emphasize the importance of germline CNVs and propose strategies to aid clinicians to better interpret structural variations and assess their clinical implications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small nuclear RNAs (snRNAs) are important factors in the functioning of eukaryotic cells that form several small complexes with proteins; these ribonucleoprotein particles (U snRNPs) have an essential role in the pre-mRNA processing, particularly in splicing, catalyzed by spliceosomes, large RNA-protein complexes composed of various snRNPs. Even though they are well defined in mammals, snRNPs are still not totally characterized in certain trypanosomatids as Trypanosoma cruzi. For this reason we subjected snRNAs (U2, U4, U5, and U6) from T. cruzi epimastigotes to molecular characterization by polymerase chain reaction (PCR) and reverse transcription-PCR. These amplified sequences were cloned, sequenced, and compared with those other of trypanosomatids. Among these snRNAs, U5 was less conserved and U6 the most conserved. Their respective secondary structures were predicted and compared with known T. brucei structures. In addition, the copy number of each snRNA in the T. cruzi genome was characterized by Southern blotting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Hirschsprung disease is characterized by the absence of intramural ganglion cells in the enteric plexuses, due to a fail during enteric nervous system formation. Hirschsprung has a complex genetic aetiology and mutations in several genes have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. In this study, we have looked for CNVs in some of the genes related to Hirschsprung (EDNRB, GFRA1, NRTN and PHOX2B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. Methods: CNVs screening was performed in 208 HSCR patients using a self-designed set of MLPA probes, covering the coding region of those genes. Results: A deletion comprising the first 4 exons in GFRA1 gene was detected in 2 sporadic HSCR patients and in silico approaches have shown that the critical translation initiation signal in the mutant gene was abolished. In this study, we have been able to validate the reliability of this technique for CNVs screening in HSCR. Conclusions: The implemented MLPA based technique presented here allows CNV analysis of genes involved in HSCR that have not been not previously evaluated. Our results indicate that CNVs could be implicated in the pathogenesis of HSCR, although they seem to be an uncommon molecular cause of HSCR.