1000 resultados para CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::ALIMENTOS
Resumo:
Environmental liabilities from accidents in the retail petroleum industry, especially in urban areas, have represented a serious problem whose impact reaches the underground, people's health and even economic losses with the remediation process. In U.S.A. are estimated hundreds of billions of dollars invested in soil remediation processes. The results of the reports and investigative reports of liabilities in fuel stations distributed in the urban area of Natal-RN were used to estimate the local scenario of contamination. This database has been possible to determine the main contaminants (BTEX, PAHs, TOC), affected neighborhoods and types of potentially more impacted soils. Experiments were carried out in order to reverse contamination of this scenario, where the soil type was a factor in the planning, because it influences directly on the effectiveness of remediation techniques studied: Oxidation by hydrogen peroxide and oxidation by sodium persulphate. These oxidants are activated forming free radicals (HO•-, SO4 •-, HO2 • , O2 •-, S2O8 -2, etc) responsible for to mineralize the hydrocarbons and other organic compounds (releasing O2 e CO2). In the activation process, the ferrous ions (II) and ferric (III) were studied as well as hydrogen peroxide activation technique with sodium persulfate, the latter being presented the best efficiency among all the study, when activated with Fe+3. In addition to defining the most efficient technique, the aim of this study was to evaluate the influence of different soils among oxidative techniques, characterizing the effect of the concentration of these oxidants and also the concentration of the catalysts. Exists in most scenarios evaluated the presence of intrinsic total iron soil matrix. The so-called latosols present microaggregates reddish indicating the presence of these reactive species like iron and clayey aspect. The kinetic study was conducted by experimental design and monitoring of the percentage of total carbon (SSM-5000A) in the solid and liquid phases, knowing that 82.4% of the diesel molecule is carbon. Yet organic carbon and pH of liquid samples were analyzed for technical, characterizing the influence of soil type and its operating condition. The Fenton-like technique H2O2 e Fe+2 presented satisfactory oxidation, including sandy soil, but well below the best result. The sodium persulphate only activated with temperature, even in the most favorable soil, did not provide good efficiency. The best technique in the study had the concentration profile with 2,2x10- 1mol.L-1 of Na2S2O8 activated with 6,53x10-1mol.L-1 of H2O2 and 2,5x10-2 Fe3+mol.L-1 which reduced in less than a day 96 contamination in red soil, initially with 66,667 mg of diesel per kg of clean soil
Resumo:
The distribution and mobilization of fluid in a porous medium depend on the capillary, gravity, and viscous forces. In oil field, the processes of enhanced oil recovery involve change and importance of these forces to increase the oil recovery factor. In the case of gas assisted gravity drainage (GAGD) process is important to understand the physical mechanisms to mobilize oil through the interaction of these forces. For this reason, several authors have developed physical models in laboratory and core floods of GAGD to study the performance of these forces through dimensionless groups. These models showed conclusive results. However, numerical simulation models have not been used for this type of study. Therefore, the objective of this work is to study the performance of capillary, viscous and gravity forces on GAGD process and its influence on the oil recovery factor through a 2D numerical simulation model. To analyze the interplay of these forces, dimensionless groups reported in the literature have been used such as Capillary Number (Nc), Bond number (Nb) and Gravity Number (Ng). This was done to determine the effectiveness of each force related to the other one. A comparison of the results obtained from the numerical simulation was also carried out with the results reported in the literature. The results showed that before breakthrough time, the lower is the injection flow rate, oil recovery is increased by capillary force, and after breakthrough time, the higher is the injection flow rate, oil recovery is increased by gravity force. A good relationship was found between the results obtained in this research with those published in the literature. The simulation results indicated that before the gas breakthrough, higher oil recoveries were obtained at lower Nc and Nb and, after the gas breakthrough, higher oil recoveries were obtained at lower Ng. The numerical models are consistent with the reported results in the literature
Resumo:
One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values
Resumo:
Several materials are currently under study for the CO2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO2 in mesoporous materials of different structures, such as MCM-48 and SBA- 15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10NiSBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g-1 ) and SBA-15 (0.914 mmol g-1 ) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g-1) and SBA-15 (9.97 mmol g-1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system
Resumo:
Primary processing of natural gas platforms as Mexilhão Field (PMXL-1 ) in the Santos Basin, where monoethylene glycol (MEG) has been used to inhibit the formation of hydrates, present operational problems caused by salt scale in the recovery unit of MEG. Bibliographic search and data analysis of salt solubility in mixed solvents, namely water and MEG, indicate that experimental reports are available to a relatively restricted number of ionic species present in the produced water, such as NaCl and KCl. The aim of this study was to develop a method for calculating of salt solubilities in mixed solvent mixtures, in explantion, NaCl or KCl in aqueous mixtures of MEG. The method of calculating extend the Pitzer model, with the approach Lorimer, for aqueous systems containing a salt and another solvent (MEG). Python language in the Integrated Development Environment (IDE) Eclipse was used in the creation of the computational applications. The results indicate the feasibility of the proposed calculation method for a systematic series of salt (NaCl or KCl) solubility data in aqueous mixtures of MEG at various temperatures. Moreover, the application of the developed tool in Python has proven to be suitable for parameter estimation and simulation purposes
Resumo:
This research aims to set whether is possible to build spatial patterns over oil fields using DFA (Detrended Fluctuation Analysis) of the following well logs: sonic, density, porosity, resistivity and gamma ray. It was employed in the analysis a set of 54 well logs from the oil field of Campos dos Namorados, RJ, Brazil. To check for spatial correlation, it was employed the Mantel test between the matrix of geographic distance and the matrix of the difference of DFA exponents of the well logs. The null hypothesis assumes the absence of spatial structures that means no correlation between the matrix of Euclidean distance and the matrix of DFA differences. Our analysis indicate that the sonic (p=0.18) and the density (p=0.26) were the profiles that show tendency to correlation, or weak correlation. A complementary analysis using contour plot also has suggested that the sonic and the density are the most suitable with geophysical quantities for the construction of spatial structures corroborating the results of Mantel test
Resumo:
Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)
Resumo:
The soursop (A. muricata) is a fruit rich in minerals especially the potassium content. The commercialization of soursop in natura and processed has increased greatly in recent years. Drying fruit pulp in order to obtain the powdered pulp has been studied, seeking alternatives to ensure the quality of dehydrated products at a low cost of production. The high concentration of sugars reducing present in fruits causes problems of agglomeration and retention during fruit pulp drying in spouted bed dryers. On the other hand in relation to drying of milk and fruit pulp with added milk in spouted bed, promising results are reported in the literature. Based on these results was studied in this work drying of the pulp soursop with added milk in spouted bed with inert particles. The tests were based on a 24 factorial design were evaluated for the effects of milk concentration (30 to 50% m/m), drying air temperature (70 to 90 °C), intermittency time (10 to 14 min), and ratio of air velocity in relation to the minimum spout (1.2 to 1.5) on the rate of production, of powder moisture, yield, rate of drying and thermal efficiency of the process. There were physical and chemical analysis of mixtures, of powders and of mixtures reconstituted by rehydration powders. Were adjusted statistical models of first order to data the rate of production, yield and thermal efficiency, that were statistically significant and predictive. An efficiency greater than 40% under the conditions of 50% milk mixture, at 70 ° C the drying air temperature and 1.5 for the ratio between the air velocity and the minimum spout has been reached. The intermittency time showed no significant effect on the analyzed variables. The final product had moisture in the range of 4.18% to 9.99% and water activity between 0.274 to 0.375. The mixtures reconstituted by rehydration powders maintained the same characteristics of natural blends.
Resumo:
The Terminalia catappa Linn belonging to Combretaceae family, popularly known as castanets, has fruits consists of a fleshy pulp, rounded seed and a very hard shell. The natural pigmentation existing in the fruit of castanet indicates the presence of anthocyanins, phenolic nature components belonging to the group of flavonoids, which have antioxidant activity. This research was conducted with the castanets and aimed to the study of factors influencing the extraction of dyes from its pulp. The extracts were obtained using a reactor enjaquetado by solid-liquid extraction. The factors were evaluated as temperature, time, solvent ratio and pH extraction. Adopting a factorial design of 24 , with 4 repetitions at the central point, the effects of these factors on the extraction process were analyzed using Statistica 7.0 software. The antioxidant activity (AA), the content of phenolic compounds (CFT) and the total monomeric anthocyanin content (AMT) were evaluated as response variables planning. Statistical analysis of the results, the effects that influenced the extraction were different for each response (CFT, AMT and AA). However, the pH was significant for the extraction of all compounds. The kinetic behavior of the dye extraction was also studied for phenolic compounds, monomeric anthocyanins and antioxidant activity, in which the equilibrium was reached after 90 minutes of extraction. To study the stability of anthocyanins temperature was the factor that most influenced the stability, however the concentration and pH also played a part.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
Resumo:
Actually, Brazil is one of the larger fruit producer worldwide, with most of its production being consumed in nature way or either as juice or pulp. It is important to highlig ht in the fruit productive chain there are a lot lose due mainly to climate reasons, as well as storage, transportation, season, market, etc. It is known that in the pulp and fruit processing industy a yield of 50% (in mass) is usually obtained, with the other part discarded as waste. However, since most this waste has a high nutrient content it can be used to generate added - value products. In this case, drying plays an important role as an alternative process in order to improve these wastes generated by the fruit industry. However, despite the advantage of using this technique in order to improve such wastes, issues as a higher power demand as well as the thermal efficiency limitation should be addressed. Therefore, the control of the main variables in t his drying process is quite important in order to obtain operational conditions to produce a final product with the target specification as well as with a lower power cost. M athematical models can be applied to this process as a tool in order to optimize t he best conditions. The main aim of this work was to evaluate the drying behaviour of a guava industrial pulp waste using a batch system with a convective - tray dryer both experimentally and using mathematical modeling. In the experimental study , the dryin g carried out using a group of trays as well as the power consume were assayed as response to the effects of operational conditions (temperature, drying air flow rate and solid mass). Obtained results allowed observing the most significant variables in the process. On the other hand, the phenomenological mathematical model was validated and allowed to follow the moisture profile as well as the temperature in the solid and gas phases in every tray. Simulation results showed the most favorable procedure to o btain the minimum processing time as well as the lower power demand.
Resumo:
With the increasing environmental awareness, maximizing biodegradability and minimizing ecotoxicity is the main driving force for new technological developments. Thus, can be developed new biodegradable lubricants for use in environmentally sensitive areas. The aim of this study was to obtain new bio-lubricants from passion fruit (Passiflora edulis Sims f. flavicarpa Degener) and moringa (Moringa oleifera Lamarck) epoxidized oils and develop a new additive package using experimental design for their use as a hydraulic fluid. In the first stage of this work was performed the optimization of the epoxidation process of the oils using fractional experimental design 24-1 , varying the temperature, reaction time, ratio of formic acid and hydrogen peroxide. In the second step was investigated the selectivity, thermodynamics and kinetics of the reaction for obtaining the two epoxides at 30, 50 and 70 °C. The result of the experimental design confirmed that the epoxidation of passion fruit oil requires 2 hours of reaction, 50 °C and a ratio H2O2/C=C/HCOOH (1:1:1). For moringa oil were required 2 hours reaction, 50 °C and a ratio of H2O2/C=C/HCOOH (1:1:1.5). The results of the final conversions were equal to 83.09% (± 0.3) for passion fruit oil epoxide and 91.02 (±0,4) for moringa oil epoxide. Following was made the 23 factorial design to evaluate which are the best concentrations of corrosion inhibitor and anti-wear (IC), antioxidant (BHA) and extreme pressure (EP) additives. The bio-lubricants obtained in this step were characterized according to DIN 51524 (Part 2 HLP) and DIN 51517 (Part 3 CLP) standards. The epoxidation process of the oils was able to improve the oxidative stability and reduce the total acid number, when compared to the in natura oils. Moreover, the epoxidized oils best solubilized additives, resulting in increased performance as a lubricant. In terms of physicochemical performance, the best lubricant fluid was the epoxidized moringa oil with additives (EMO-ADI), followed by the epoxidized passion fruit oil with additives (EPF-ADI) and, finally, the passion fruit in natura oil without additives (PFO). Lastly, was made the investigation of the tribological behavior under conditions of boundary lubrication for these lubricants. The tribological performance of the developed lubricants was analyzed on a HFRR equipment (High Frequency Reciprocating Rig) and the coefficient of friction, which occurs during the contact and the formation of the lubricating film, was measured. The wear was evaluated through optical microscopy and scanning electron microscopy (SEM). The results showed that the addition of extreme pressure (EP) and anti-wear and corrosion inhibitor (CI) additives significantly improve the tribological properties of the fluids. In all assays, was formed a lubricating film that is responsible for reducing the coefficient of metal-to-metal wear. It was observed that the addition of EP and IC additives in the in natura vegetable oils of passion fruit and moringa did not favor a significant reduction in wear. The bio-lubricants developed from passion fruit and moringa oils modified via epoxidation presented satisfactory tribological properties and shown to be potential lubricants for replacement of commercial mineral-based fluids.
Resumo:
Drilling fluids have fundamental importance in the petroleum activities, since they are responsible for remove the cuttings, maintain pressure and well stability, preventing collapse and inflow of fluid into the rock formation and maintain lubrication and cooling the drill. There are basically three types of drilling fluids: water-based, non-aqueous and aerated based. The water-based drilling fluid is widely used because it is less aggressive to the environment and provide excellent stability and inhibition (when the water based drilling fluid is a inhibition fluid), among other qualities. Produced water is generated simultaneously with oil during production and has high concentrations of metals and contaminants, so it’s necessary to treat for disposal this water. The produced water from the fields of Urucu-AM and Riacho da forquilha-RN have high concentrations of contaminants, metals and salts such as calcium and magnesium, complicating their treatment and disposal. Thus, the objective was to analyze the use of synthetic produced water with similar characteristics of produced water from Urucu-AM and Riacho da Forquilha-RN for formulate a water-based drilling mud, noting the influence of varying the concentration of calcium and magnesium into filtered and rheology tests. We conducted a simple 32 factorial experimental design for statistical modeling of data. The results showed that the varying concentrations of calcium and magnesium did not influence the rheology of the fluid, where in the plastic viscosity, apparent viscosity and the initial and final gels does not varied significantly. For the filtrate tests, calcium concentration in a linear fashion influenced chloride concentration, where when we have a higher concentration of calcium we have a higher the concentration of chloride in the filtrate. For the Urucu’s produced water based fluids, volume of filtrate was observed that the calcium concentration influences quadratically, this means that high calcium concentrations interfere with the power of the inhibitors used in the formulation of the filtered fluid. For Riacho’s produced water based fluid, Calcium’s influences is linear for volume of filtrate. The magnesium concentration was significant only for chloride concentration in a quadratic way just for Urucu’s produced water based fluids. The mud with maximum concentration of magnesium (9,411g/L), but minimal concentration of calcium (0,733g/L) showed good results. Therefore, a maximum water produced by magnesium concentration of 9,411g/L and the maximum calcium concentration of 0,733g/L can be used for formulating water-based drilling fluids, providing appropriate properties for this kind of fluid.
Resumo:
Currently the market requires increasingly pure oil derivatives and, with that, comes the need for new methods for obtaining those products that are more efficient and economically viable. Considering the removal of sulfur from diesel, most refineries uses catalytic hydrogenation process, the hydrodesulfurization. These processes needs high energy content and high cost of production and has low efficiency in removing sulfur at low concentrations (below 500 ppm). The adsorption presents itself as an efficient and economically viable alternative in relation to the techniques currently used. With that, the main purpose of this work is to develop and optimize the obtaining of new adsorbents based on diatomite, modified with two non ionic surfactants microemulsions, adding efficiency to the material, to its application on removal of sulfur present in commercial diesel. Analyses were undertaken of scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray fluorescence (XRF), thermogravimetry (TG) and N2 adsorption (BET) for characterization of new materials obtained. The variables used for diatomite modification were: microemulsion points for each surfactant (RNX 95 and UNTL 90), microemulsion aqueous phase through the use or non-use of salts (CaCl2 and BaCl2), the contact time during the modification and the contact form. The study of adsorption capacity of materials obtained was performed using a statistical modeling to evaluate the influence of salt concentration in the aqueous phase (20 ppm to 1500 ppm), finite bath temperature (25 to 60° C) and the concentration of sulphur in diesel. It was observed that the temperature and the concentration of sulphur (300 to 1100 ppm) were the most significant parameters, in which increasing their values increase the ability of modified clay to adsorb the sulphur in diesel fuel. Adsorption capacity increased from 0.43 to mg/g 1.34 mg/g with microemulsion point optimization and with the addition of salts.
Resumo:
The textile sector is one of the main contributors to the generation of industrial wastewaters due to the use of large volumes of water, which has a high organic load content. In these, it is observed to the presence of dyes, surfactants, starch, alcohols, acetic acid and other constituents, from the various processing steps of the textiles. Hence, the treatment of textile wastewater becomes fundamental before releasing it into water bodies, where they can cause disastrous physical-chemical changes for the environment. Surfactants are substances widely used in separation processes and their use for treating textile wastewaters was evaluated in this research by applying the cloud point extraction and the ionic flocculation. In the cloud point extraction was used as surfactant nonylphenol with 9.5 ethoxylation degree to remove reactive dye. The process evaluation was performed in terms of temperature, surfactant and dye concentrations. The dye removal reached 91%. The ionic flocculation occurs due to the presence of calcium, which reacts with anionic surfactant to form insoluble surfactants capable of attracting the organic matter by adsorption. In this work the ionic flocculation using base soap was applied to the treatment of synthetic wastewater containing dyes belonging to three classes: direct, reactive, and disperse. It was evaluated by the influence of the following parameters: surfactant and electrolyte concentrations, stirring speed, equilibrium time, temperature, and pH. The flocculation of the surfactant was carried out in two ways: forming the floc in the effluent itself and forming the floc before mixing it to the effluent. Removal of reactive and direct dye, when the floc is formed into textile effluent was 97% and 87%, respectively. In the case where the floc is formed prior to adding it to the effluent, the removal to direct and disperse dye reached 92% and 87%, respectively. These results show the efficience of the evaluated processes for dye removal from textile wastewaters.