966 resultados para CHRONIC NEUROPATHIC PAIN
Resumo:
We assessed for the first time the long-term maintenance of repetitive transcranial magnetic stimulation (rTMS)-induced analgesia in patients with chronic widespread pain due to fibromyalgia. Forty consecutive patients were randomly assigned, in a double-blind fashion, to 2 groups: one receiving active rTMS (n = 20) and the other, sham stimulation (n = 20), applied to the left primary motor cortex. The stimulation protocol consisted of 14 sessions: an ""induction phase"" of 5 daily sessions followed by a ""maintenance phase"" of 3 sessions a week apart, 3 sessions a fortnight apart, and 3 sessions a month apart. The primary outcome was average pain intensity over the last 24 hours, measured before each stimulation from day 1 to week 21 and at week 25 (1 month after the last stimulation). Other outcomes measured included quality of life, mood and anxiety, and several parameters of motor cortical excitability. Thirty patients completed the study (14 in the sham stimulation group and 16 in the active stimulation group). Active rTMS significantly reduced pain intensity from day 5 to week 25. These analgesic effects were associated with a long-term improvement in items related to quality of life (including fatigue, morning tiredness, general activity, walking, and sleep) and were directly correlated with changes in intracortical inhibition. In conclusion, these results suggest that TMS may be a valuable and safe new therapeutic option in patients with fibromyalgia. (C) 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
We assessed cortical excitability and intracortical modulation systematically, by transcranial magnetic stimulation (TMS) of the motor cortex, in patients with fibromyalgia. In total 46 female patients with fibromyalgia and 21 normal female subjects, matched for age, were included in this study. TMS was applied to the hand motor area of both hemispheres and motor evoked potentials (MEPs) were recorded for the first interosseous muscle of the contralateral hand. Single-pulse stimulation was used for measurements of the rest motor threshold (RMT) and suprathreshold MEP. Paired-pulse stimulation was used to assess short intracortical inhibition (SICI) and intracortical facilitation (ICF). Putative correlations were sought between changes in electrophysiological parameters and major clinical features of fibromyalgia, such as pain, fatigue, anxiety, depression and catastrophizing. The RMT on both sides was significantly increased in patients with fibromyalgia and suprathreshold MEP was significantly decreased bilaterally. However, these alterations, suggesting a global decrease in corticospinal excitability, were not correlated with clinical features. Patients with fibromyalgia also had lower ICF and SICI on both sides, than controls, these lower values being correlated with fatigue, catastrophizing and depression. These neurophysiological alterations were not linked to medication, as similar changes were observed in patients with or without psychotropic treatment. In conclusion, fibromyalgia is associated with deficits in intracortical modulation involving both GABAergic and glutamatergic mechanisms, possibly related to certain aspects of the pathophysiology of this chronic pain syndrome. Our data add to the growing body of evidence for objective and quantifiable changes in brain function in fibromyalgia. (C) 2010 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
We investigated the analgesic effects of unilateral repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) in two models of experimental pain in healthy volunteers. Two studies were carried out in parallel in two groups of 26 paid healthy volunteers. The effects of active or sham rTMS (frequency, 10 Hz; intensity, 80% resting motor threshold) applied to the right M1 or DLPFC were compared in a double-blind randomized cross-over design. In the first series of experiments, we analyzed the effects of rTMS on thermal (heat and cold) detection and pain thresholds measured on both hands and the left foot, by standardized quantitative sensory testing methods. In the second series of experiments, we measured the effects of M1 or DLPFC rTMS on the threshold and recruitment curves of the RIII nociceptive reflex evoked by ipsilateral electrical stimulation of the sural nerve and recorded on the biceps femoris of both lower limbs. In both studies, measurements were taken before and up to 60 min after the end of rTMS. Active rTMS of both M1 and DLPFC significantly increased the thermal pain thresholds, measured for both hands and the left foot, this effect being most marked for cold pain. These effects, which lasted at least 1 h after rTMS, were selective because they were not associated with changes in non-painful thermal sensations. By contrast, the second study showed that rTMS of M1 or DLPFC had no significant effect on the threshold or recruitment curve of the nociceptive flexion RIII reflex. Our findings demonstrate that unilateral rTMS of M1 or DLPFC induces diffuse and selective analgesic effects in healthy volunteers. The lack of effect on the RIII reflex suggests that such analgesic effects may not depend on the activation of descending inhibitory systems. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Introducción: el dolor neuropático es una patología de considerable prevalencia e impacto socio-económico en la población latinoamericana, la evidencia clínica sugiere que los ligandos de canales de calcio y el parche de Lidocaína pueden tratar exitosamente el dolor neuropático periférico y localizado. Metodología: se realizo una evaluación económica tipo costo-efectividad, observacional y retrospectiva con datos extraídos de las historias clínicas de pacientes atendidos en la clínica de dolor de la IPS. La variable primaria de efectividad fue la mejoría del dolor medida mediante escala visual análoga. Resultados: se estudiaron 94 pacientes tratados con: Gabapentina (G) 21, Pregabalina (P) 24, Gabapentina+ lidocaína (G/P) 24, Pregabalina + Lidocaína (P/L) 25, los costos asociados al tratamiento son los siguientes COP$114.070.835, COP$105.855.920, COP$88.717.481 COP$89.854.712 respectivamente, el número de pacientes con mejoría significativa de dolor fue: 8,10,9 y 21 pacientes respectivamente. El ICER de G/L con respecto a G fue: COP$ -25.353.354. El ICER de P/L con respecto a P fue: COP$ -1.454.655. Conclusiones: la adición del parche de lidocaína a la terapia regular con P/L represento una disminución de consumo de recursos en salud como uso de medicamentos co-analgésicos, analgésicos de rescate y fármacos para controlar reacciones adversas, de la misma forma que consultas a profesionales de la salud. Cada paciente manejado con P/L representa un ahorro de COP $1.454.655 al contrario si se manejase con el anticonvulsivante de manera exclusiva, en el caso de G/L este ahorro es de COP $ 25.353.354 frente a G sola.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^
Resumo:
Approximately 12,000 new cases of spinal cord injury (SCI) are added each year to the estimated 259,000 Americans living with SCI. The majority of these patients return to society, their lives forever changed by permanent loss of sensory and motor function. While there are no FDA approved drugs for the treatment of SCI or a universally accepted standard therapy, the current though controversial treatment includes the delivery of high dosages of the corticosteroid methyliprednisolone sodium succinate, surgical interventions to stabilize the spinal column, and physical rehabilitation. It is therefore critically important to fully understand the pathology of injury and determine novel courses and rationally-based therapies for SCI. ^ Vascular endothelial growth factor (VEGF) is an attractive target for treating central nervous system (CNS) injury and disease because it has been shown to influence angiogenesis and neuroprotection. Preliminary studies have indicated that increased vasculature may be associated with functional recovery; therefore exogenous delivery of a pro-angiogenic growth factor such as VEGF may improve neurobehavioral outcome. In addition, VEGF may provide protection from secondary injury and result in increased survival and axonal sprouting. ^ In these studies, SCI rats received acute intraspinal injections of VEGF, the antibody to VEGF, or vehicle control. The effect of these various agents was investigated using longitudinalmulti-modal magnetic resonance imaging (MRI), neuro- and sensory behavioral assays, and end point immunohistochemistry. We found that rats that received VEGF after SCI had increased tissue sparing and improved white matter integrity at the earlier time points as shown by advanced magnetic resonance imaging (MRI) techniques. However, these favorable effects of VEGF were not maintained, suggesting that additional treatments with VEGF at multiple time points may be more beneficial, Histological examinations revealed that VEGF treatment may result in increased oligodendrogenesis and therefore may eventually lead to remyelination and improved functional outcome. ^ On the neurobehavioral studies, treatments with VEGF and Anti-VEGF did not significantly affect performance on tests of open-field locomotion, grid walk, inclined plane, or rearing. However, VEGF treatment resulted in significantly increased incidence of chronic neuropathic pain. This phenomenon could possibly be attributed to the fact that VEGF treatment may promote axonal sprouting and also results in tissue sparing, thereby providing a substrate for the growth of new axons. New connections made by these sprouting axons may involve components of pathways involved in the transmission of pain and therefore result in increased pain in those animals. ^
Resumo:
Introdução. Apesar das evidências dos efeitos imunomodulatórios da morfina, não há na literatura estudos que tenham comparado a interação entre citocinas, imunidade celular (linfócitos T, B e NK) e a administração prolongada de morfina administrada pelas vias oral ou intratecal em doentes com dor crônica neuropática não relacionada ao câncer. Foram avaliados de forma transversal e comparativa 50 doentes com diagnóstico de dor lombar crônica e com presença de radiculopatia (dor neuropática) previamente operados para tratar hérnia discal lombar (Síndrome Dolorosa Pós- Laminectomia), sendo 18 doentes tratados prolongadamente com infusão de morfina pela via intratecal com uso de sistema implantável no compartimento subaracnóideo (grupo intratecal); 17 doentes tratados prolongadamente com morfina pela via oral (n=17) e 15 doentes tratados com fármacos mas sem opióides (grupo sem opioide). Foram analisadas as concentração das citocinas IL-2, IL-4, IL-8, TNFalfa, IFNy, IL-5, GM-CSF, IL-6, IL-10 e IL-1beta no plasma e no líquido cefalorraquidiano; imunofenotipagem de linfócitos T, B e células NK e avaliados os Índice de Escalonamento de Opióide (em percentagem de opióide utilizada e em mg), dose cumulativa de morfina (mg), duração do tratamento em meses, dose final de morfina utilizada (em mg), e equivalente de morfina por via oral (em mg). Resultados. Não houve diferença estatisticamente significativa entre o número de linfócitos T, B e NK nos doentes com morfina administrada pelas vias IT, VO e os não usuários de morfina. Houve correlação positiva entre as concentrações de linfócitos T CD4 e o Índice de Escalonamento de Opióide (em % e mg) nos doentes tratados com morfina por via intratecal. Houve correlação negativa entre as concentrações de células NK (CD56+) e o Índice de Escalonamento de Opióide (em % e mg) nos doentes tratados com morfina por via intratecal. Houve correlação positiva entre o número de células NK (CD56+) e a dose cumulativa de morfina (em mg) administrada pelas vias intratecal e oral. Houve correlação positiva entre as concentrações de linfócitos T CD8 e a duração do tratamento em meses nos doentes tratados com morfina pela via oral. As concentrações de IL-8 e IL-1beta foram maiores no LCR do que no plasma em todos os doentes da amostra analisada. As concentrações de IFNy no LCR foram maiores nos doentes que utilizavam morfina pela via oral e nos não usuários de morfina do que nos que a utilizavam pela via intratecal. As concentrações de plasmáticas de IL-5 foram maiores nos doentes utilizavam morfina pela via oral ou intratecal do que nos que não a utilizavam. A concentração de IL-5 no LCR correlacionou-se negativamente com a magnitude da dor de acordo com a EVA nos doentes tratados com morfina pelas via oral ou intratecal. Nos doentes tratados com morfina pelas via oral ou intratecal, a concentração de IL-2 no LCR correlacionou-se positivamente com a magnitude da dor de acordo com a EVA e negativamente com o Índice de Escalonamento de Opióide (em % e mg) e a dose cumulativa de morfina (em mg). As concentrações plasmáticas de GMCSF foram maiores nos doentes utilizavam morfina pela via oral ou intratecal do que nos não a utilizavam. A concentração de TNFalfa no LCR nos doentes tratados com morfina pela via intratecal correlacionou-se negativamente com o Índice de Escalonamento de Opióide (em % e mg), a dose cumulativa de morfina (em mg) e dose equivalente por via oral (em mg) de morfina. A concentração plasmática das citocinas IL-6 e IL-10 correlacionou-se negativamente com a duração do tratamento (em meses) nos doentes tratados com morfina administrada pela via oral. O Índice de Escalonamento de Opióide (em mg e %) correlacionou-se negativamente com as concentrações no LCR de IL-2 e TNFalfa nos doentes tratados com morfina administrada pela via intratecal. O Índice de Escalonamento de Opióide (em mg e %) correlacionou-se negativamente com as concentrações no LCR de IL-2 e IL-5 nos doentes tratados com morfina administrada pela via oral. Houve correlação negativa entre a intensidade da dor de acordo com a EVA e as concentrações de IL-5 e IL-2 no LCR nos doentes tratados com morfina administrada pelas vias oral e intratecal. Houve correlação negativa entre a intensidade da dor de acordo com a EVA e as concentrações plasmáticas de IL-4 nos doentes tratados com morfina administrada pela via intratecal. Houve correlação negativa entre a intensidade da dor de acordo com a EVA e as concentrações plasmáticas de IL-1beta nos doentes tratados com morfina administrada pela via intratecal. Conclusões: Os resultados sugerem associações entre citocinas e imunidade celular (células T , B e NK) e o tratamento prolongado com morfina administrada pela via oral ou intratecal. Estes resultados podem contribuir para a compreensão da imunomodulação da morfina administrada por diferentes vias em doentes com dor neuropática crônica não oncológica . São necessários mais estudos sobre os efeitos da morfina sobre o sistema imunológico
Resumo:
Contexto: La eficacia de los cannabinoides en el dolor neuropático es desconocida. El control del dolor es determinante en los pacientes ya que genera un impacto negativo en la calidad de vida de los pacientes. Objetivo: El presente trabajo pretende demostrar la evidencia sobre la eficacia de los medicamentos cannabinoides en el control del dolor neuropático oncológico, mediante la evaluación de la literatura disponible. Metodología: Se realizó una revisión sistemática de literatura incluyendo estudios experimentales, observacionales y revisiones sistemáticas en un periodo de 15 años. Se incluyeron todos los estudios desde el años 2000 con evidencia IB según la escala de evidencia de Oxford. Resultados: Cuatro estudios cumplieron criterios para su inclusión, sin embargo la evidencia es baja y no permite recomendar o descartar los cannabinoides como terapia coadyuvante en control del dolor neuropático oncológico. La combinación de THC/CDB (Sativex®) parece ser un medicamento seguro pues no se reportaron muertes asociadas a su uso, sin embargo la presentación de eventos adversos a nivel gastrointestinal y neurológico podría aumentar el riesgo de interacciones medicamentosas y tener un impacto negativo en la calidad de vida de los pacientes oncológicos. Conclusiones: No hay suficiente literatura y la evidencia no es suficiente para recomendar o descartar el uso de los cannabinoides en dolor neuropático oncológico. Futuros estudios deben realizarse para analizar el beneficio de estos medicamentos. Aunque ética y socialmente hay resistencia para el uso de los cannabinoides, actualmente hay una gran discusión política en el mundo y en Colombia para su aceptación como terapia en el control del dolor.
Resumo:
La estimulación eléctrica medular (EEM), es una técnica mínimamente invasiva, segura, con pocos efectos secundarios y resultados favorables en patologías crónicas asociadas a dolor severo de difícil manejo, tal como es el caso del Síndrome Doloroso Regional Complejo (SDRC). La evidencia actual señala beneficios en esta patología particular, motivo por el cuál es de interés hacer una revisión actualizada sobre la EEM en SDRC.
Resumo:
BACKGROUND: Chronic pain is frequent in persons living with spinal cord injury (SCI). Conventionally, the pain is treated pharmacologically, yet long-term pain medication is often refractory and associated with side effects. Non-pharmacological interventions are frequently advocated, although the benefit and harm profiles of these treatments are not well established, in part because of methodological weaknesses of available studies. OBJECTIVES: To critically appraise and synthesise available research evidence on the effects of non-pharmacological interventions for the treatment of chronic neuropathic and nociceptive pain in people living with SCI. SEARCH METHODS: The search was run on the 1st March 2011. We searched the Cochrane Injuries Group's Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), four other databases and clinical trials registers. In addition, we manually searched the proceedings of three major scientific conferences on SCI. We updated this search in November 2014 but these results have not yet been incorporated. SELECTION CRITERIA: Randomised controlled trials of any intervention not involving intake of medication or other active substances to treat chronic pain in people with SCI. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias in the included studies. The primary outcome was any measure of pain intensity or pain relief. Secondary outcomes included adverse events, anxiety, depression and quality of life. When possible, meta-analyses were performed to calculate standardised mean differences for each type of intervention. MAIN RESULTS: We identified 16 trials involving a total of 616 participants. Eight different types of interventions were studied. Eight trials investigated the effects of electrical brain stimulation (transcranial direct current stimulation (tDCS) and cranial electrotherapy stimulation (CES); five trials) or repetitive transcranial magnetic stimulation (rTMS; three trials). Interventions in the remaining studies included exercise programmes (three trials); acupuncture (two trials); self-hypnosis (one trial); transcutaneous electrical nerve stimulation (TENS) (one trial); and a cognitive behavioural programme (one trial). None of the included trials were considered to have low overall risk of bias. Twelve studies had high overall risk of bias, and in four studies risk of bias was unclear. The overall quality of the included studies was weak. Their validity was impaired by methodological weaknesses such as inappropriate choice of control groups. An additional search in November 2014 identified more recent studies that will be included in an update of this review.For tDCS the pooled mean difference between intervention and control groups in pain scores on an 11-point visual analogue scale (VAS) (0-10) was a reduction of -1.90 units (95% confidence interval (CI) -3.48 to -0.33; P value 0.02) in the short term and of -1.87 (95% CI -3.30 to -0.45; P value 0.01) in the mid term. Exercise programmes led to mean reductions in chronic shoulder pain of -1.9 score points for the Short Form (SF)-36 item for pain experience (95% CI -3.4 to -0.4; P value 0.01) and -2.8 pain VAS units (95% CI -3.77 to -1.83; P value < 0.00001); this represented the largest observed treatment effects in the included studies. Trials using rTMS, CES, acupuncture, self-hypnosis, TENS or a cognitive behavioural programme provided no evidence that these interventions reduce chronic pain. Ten trials examined study endpoints other than pain, including anxiety, depression and quality of life, but available data were too scarce for firm conclusions to be drawn. In four trials no side effects were reported with study interventions. Five trials reported transient mild side effects. Overall, a paucity of evidence was found on any serious or long-lasting side effects of the interventions. AUTHORS' CONCLUSIONS: Evidence is insufficient to suggest that non-pharmacological treatments are effective in reducing chronic pain in people living with SCI. The benefits and harms of commonly used non-pharmacological pain treatments should be investigated in randomised controlled trials with adequate sample size and study methodology.
Resumo:
INTRODUCTION: The Neuromodulation Appropriateness Consensus Committee (NACC) of the International Neuromodulation Society (INS) evaluated evidence regarding the safety and efficacy of neurostimulation to treat chronic pain, chronic critical limb ischemia, and refractory angina and recommended appropriate clinical applications. METHODS: The NACC used literature reviews, expert opinion, clinical experience, and individual research. Authors consulted the Practice Parameters for the Use of Spinal Cord Stimulation in the Treatment of Neuropathic Pain (2006), systematic reviews (1984 to 2013), and prospective and randomized controlled trials (2005 to 2013) identified through PubMed, EMBASE, and Google Scholar. RESULTS: Neurostimulation is relatively safe because of its minimally invasive and reversible characteristics. Comparison with medical management is difficult, as patients considered for neurostimulation have failed conservative management. Unlike alternative therapies, neurostimulation is not associated with medication-related side effects and has enduring effect. Device-related complications are not uncommon; however, the incidence is becoming less frequent as technology progresses and surgical skills improve. Randomized controlled studies support the efficacy of spinal cord stimulation in treating failed back surgery syndrome and complex regional pain syndrome. Similar studies of neurostimulation for peripheral neuropathic pain, postamputation pain, postherpetic neuralgia, and other causes of nerve injury are needed. International guidelines recommend spinal cord stimulation to treat refractory angina; other indications, such as congestive heart failure, are being investigated. CONCLUSIONS: Appropriate neurostimulation is safe and effective in some chronic pain conditions. Technological refinements and clinical evidence will continue to expand its use. The NACC seeks to facilitate the efficacy and safety of neurostimulation.
Resumo:
Background and aims: chronic pain is a major public health care problem with a prevalence in Europe as high as 19% in the general population (Breivik et al. 2006). Beside classical analgesics, Antidepressants (AD) remain an essential part of the therapeutic armamentarium. The present study was aimed at reviewing current evidence for efficacy of AD in main chronic pain conditions. Methods: We performed a systematic literature search through Ovid Medline, Psychinfo and Cochrane database to retrieve controlled studies and reviews on the use of AD in specific chronic pain conditions: neuropathic pain, migraine and tension-type headache, muskuloskeletal pain, and fibromyalgia. Results: There is sufficient data to support the use of tricyclic antidepressants (TCAs) in neuropathic pain, migraine and tension-type headache. There is also good evidence for a beneficial effect of TCAs in chronic low back pain and fibromyalgia. The SNRI venlafaxine and duloxetine are drugs with less established efficacy in neuropathic pain, tension type headache and fibromyalgia, but may be recommended as second line treatment. Available data do not support the use of SSRIs in any of these conditions. Given the limitations of available studies, there is still room to better characterize putative benefits of SNRIs and SSRIs in some of these conditions. Conclusions: Efficacy of AD in chronic pain appear to vary greatly between type of AD. Beneficial effects when present seem independent of the effect on mood. There is a lack of long term controlled trials in most type of chronic pain conditions.
Resumo:
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)