997 resultados para CHAIN CONFORMATIONAL KINETICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simultaneous effects of different binary co-cultures of Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus rhamnosus and Bifidobacterium lactis with Streptococcus thermophilus and of different prebiotics on the production of fermented milk were investigated in this paper. In particular, we determined and compared the kinetics of acidification of milk either as such or supplemented with 4% (w/w) maltodextrin, oligofructose and polydextrose, as well as the probiotic survival, chemical composition (pH, lactose, lactic acid and protein contents), fatty acids profile and conjugate linoleic acid (CIA) content of fermented milk after storage at 4 degrees C for 24 h. Fermented milk quality was strongly influenced both by the co-culture composition and the selected prebiotic. Depending on the co-culture, prebiotic addition to milk influenced to different extent kinetic acidification parameters. All probiotic counts were stimulated by oligofructose and polydextrose, and among these B. lactis always exhibited the highest counts in all supplemented milk samples. Polydextrose addition led to the highest post-acidification. Although the contents of the main fatty acids were only barely influenced. the highest amounts of conjugated linoleic acid (38% higher than in the control) were found in milk fermented by S. thermophilus-L. acidophilus co-culture and supplemented with maltodextrin. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the ability of microemulsions containing medium-chain glycerides as penetration enhancers to increase the transdermal delivery of lipophilic (progesterone) and hydrophilic (adenosine) model drugs as well as the effects of an increase in surfactant blend concentration on drug transdermal delivery. Microemulsions composed of polysorbate 80, medium-chain glycerides, and propylene glycol (1:1:1, w/w/w) as surfactant blend, myvacet oil as the oily phase, and water were developed. Two microemulsions containing different concentrations of surfactant blend but similar water/oil ratios were chosen; ME-lo contained a smaller concentration of surfactant than ME-hi (47:20:33 and 63:14:23 surfactant/oil/water, w/w/w). Although in vitro progesterone and adenosine release from ME-lo and ME-hi was similar, their transdermal delivery was differently affected. ME-lo significantly increased the flux of progesterone and adenosine delivered across porcine ear skin (4-fold or higher, p < 0.05) compared to progesterone solution in oil (0.05 +/- 0.01 mu g/cm(2)/h) or adenosine in water (no drug was detected in the receptor phase). The transdermal flux of adenosine, but not of progesterone, was further increased (2-fold) by ME-hi, suggesting that increases in surfactant concentration represent an interesting strategy to enhance transdermal delivery of hydrophilic, but not of lipophilic, compounds. The relative safety of the microemulsions was assessed in cultured fibroblasts. The cytotoxicity of ME-lo and ME-hi was significantly smaller than sodium lauryl sulfate (considered moderate-to-severe irritant) at same concentrations (up to 50 mu g/mL), but similar to propylene glycol (regarded as safe), suggesting the safety of these formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long performance of an isothermal fixed bed reactor undergoing catalyst poisoning is theoretically analyzed using the dispersion model. First order reaction with dth order deactivation is assumed and the model equations are solved by matched asymptotic expansions for large Peclet number. Simple closed-form solutions, uniformly valid in time, are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are developed for the time-dependent reactant concentration and catalyst activity in an isothermal CSTR with Langmuir-Hinshelwood kinetics of deactivation and reaction. Several parallel and series posioning mechanisms are considered for a reactor which, without poisoning, would operate at a unique steady state. The use of matched asymptotic expansions and abandonment of the usual initial-steady-state assumption give results, valid from startup to final loss of activity, whose accuracy can be improved systematically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are derived for the time and magnitude of failure of an isothermal CSTR with substrate-inhibited kinetics, caused by slow catalyst deactivation under three types of parallel and series mechanisms. Reactors operating at high space velocity are found to be most susceptible to early failure and poisoning by product is more dangerous than by reactant. The magnitude of the jump across steady states depends solely on the Langmuir-Hinshelwood kinetic parameters and a detailed analysis of reactor behavior during the jump itself is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde-derived oxazolidine derivatives 4-7 of the beta-adrenoreceptor antagonists metoprolol 1, atenolol 2 and timolol 3 have been synthesised. Conformational analysis of 1-3 and the oxazolidine derivatives 4-7 has been performed using H-1 NMR spectroscopy and computational methods. The H-1 NMR studies show that for the aryloxypropanolamine beta-adrenoreceptor antagonists there is a predominance of the conformer in which the amine group is approximately antiperiplanar or trans to the aryloxymethylene group. Both H-1 NMR data and theoretical studies indicate that the oxazolidine derivatives 4-7 and the aryloxypropanolamine beta-adrenoreceptor antagonists 1-3 adopt similar conformations around the beta-amino alcohol moiety. Thus, oxazolidine ring formation does not dramatically alter the preferred conformation adopted by the beta-amino alcohol moiety of 1-3. Oxazolidine derivatives of aryloxypropanolamine beta-adrenoreceptor antagonists may therefore be appropriate as prodrugs, or semi-rigid analogues, when greater lipophilicity is required for drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-sills rat liver preparation. 2 The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3 Pregenerated SA ([C-14]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4 The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5 The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6 The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUG', MITT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7 The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their more extensive hepatic elimination avoiding systemic prostacyclin inhibition. Given that aspirin's selectivity as an anti-thrombotic agent has been postulated to be due to selective anti-platelet effects in the portal circulation, the more lipophilic and highly extracted analogues are potentially more selective anti-thrombotic agents than aspirin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatic disposition and metabolite kinetics of a homologous series of diflunisal O-acyl esters (acetyl, butanoyl, pentanoyl, anti hexanoyl) were determined using a single-pass perfused in situ rat liver preparation. The experiments were conducted using 2% BSA Krebs-Henseleit buffer (pH 7.4), and perfusions were performed at 30 mL/min in each liver. O-Acyl esters of diflunisal and pregenerated diflunisal were injected separately into the portal vein. The venous outflow samples containing the esters and metabolite diflunisal were analyzed by high performance liquid chromatography (HPLC). The normalized outflow concentration-time profiles for each parent ester and the formed metabolite, diflunisal, were analyzed using statistical moments analysis and the two-compartment dispersion model. Data (presented as mean +/- standard error for triplicate experiments) was compared using ANOVA repeated measures, significance level P < 0.05. The hepatic availability (AUC'), the fraction of the injected dose recovered in the outflowing perfusate, for O-acetyldiflunisal (C2D = 0.21 +/- 0.03) was significantly lower than the other esters (0.34-0.38). However, R-N/f(u), the removal efficiency number R-N divided by the unbound fraction in perfusate f(u), which represents the removal efficiency of unbound ester by the liver, was significantly higher for the most lipophilic ester (O-hexanoyldiflunisal, C6D = 16.50 +/- 0.22) compared to the other members of the series (9.57 to 11.17). The most lipophilic ester, C6D, had the largest permeability surface area (PS) product (94.52 +/- 38.20 mt min-l g-l liver) and tissue distribution value VT (35.62 +/- 11.33 mL g(-1) liver) in this series. The MTT of these O-acyl esters of diflunisal were not significantly different from one another. However, the metabolite diflunisal MTTs tended to increase with the increase in the parent ester lipophilicity (11.41 +/- 2.19 s for C2D to 38.63 +/- 9.81 s for C6D). The two-compartment dispersion model equations adequately described the outflow profiles for the parent esters and the metabolite diflunisal formed from the O-acyl esters of diflunisal in the liver.