977 resultados para CCD(Charge Coupled Device)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel integratable and high speed InGaAsP multi-quantum well (MQW) complex-coupled distributed feedback (DFB) laser is successfully fabricated on a semi-insulating substrate. The fabricated ridge DFB laser exhibits a threshold current of 26 mA, a slope efficiency of 0.14 W.A(-1) and a side mode suppression ratio of 40 dB together with a 3 dB bandwidth of more than 8 GHz. The device is suitable for 10 Gbit/s optical fiber communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An index-coupled DFB laser with a sampled grating has been designed and fabricated. The key concept of the approaches is to utilize the +1st-order reflection of the sampled grating for laser operation, and use a conventional holographic exposure combined with the usual photolithography to form the sampled grating. The typical threshold current of the sampled grating DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5314 mu m, which is the +1st-order peak of the sampled grating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lasing wavelength of a complex-coupled DFB laser is controlled by a sampled grating. The key concepts of the approach are to utilize the -1st order (negative first order) reflection of a sampled grating for laser single mode operation, and use conventional holographic exposure combined with the usual photolithography to fabricate the sampled grating. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the optical output is about 10 mW at an injected current of 100 mA. The lasing wavelength of the device is 1.5356 mu m, which is the -1st order wavelength of the sampled grating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission through coupled quantum dots (CQDs) is calculated using the coupled-channel recursion method. Our results reveal that the conductance peaks move to high energy as the CQDs radius decreases or the period increases. If we increase the transverse momentum the conductance peaks move to high energy. Applying this characteristic, we can design a switch device using CQDs by applying a static electric field perpendicular to transmission direction. The theoretical results qualitatively agree with the available experimental data. Our calculated results may be useful for the application of CQDs to photoelectric devices. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the generalized rate equation for the coupled quantum-dot (QD) system irradiated by a microwave field in the presence of a quantum point contact. It is shown that when a microwave field is tuned in resonance with the energy difference between the ground states of two QD's, the photon-assisted tunneling occurs and, as a result, the coupled QD system may be used as the single qubit. Furthermore, we show that the oscillating current through the detector decays drastically as the dephasing rate increases, indicating clearly the influence of the dephasing effect induced by the quantum point contact used as a detecting device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tandem organic light-emitting diodes (OLEDs) with an effective charge-generation connection structure of Mg-doped tris(8-hydroxyquinoline) aluminum (Alq(3))/Molybdenum oxide (MoO3)-doped 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) were presented. At a current density of 50 mA/cm(2), the current efficiency of the tandem OLED with two standard NPB/Alq(3) emitting units is 4.2 cd/A, which is 1.7 times greater than that of the single EL device. The tandem OLED with the similar connection structure of Mg-doped PTCDA/MoO3-doped PTCDA was also fabricated and the influences of the different connection units on the current efficiency of the tandem OLED were discussed as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.55 mu m InGaAsP-InP partly gain-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. The laser produces self-pulsations with a frequency tuning range of more than 135 GHz. All-optical clock recovery from 40 Gb/s degraded data streams has been demonstrated. Successful lockings of the device at frequencies of 30 GHz, 40 GHz, 50 GHz, and 60 GHz to a 10 GHz sidemode injection are also conducted, which demonstrates the capability of the device for all-optical clock recovery at different frequencies. This flexibility of the device is highly desired for practical uses. Crown Copyright

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex-coupled DFB laser with sampled grating has been designed and fabricated. The method uses the + 1 st order reflection of the sampled grating for laser single-mode operation. The typical threshold current of the sampled grating based DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5385μm, which is the +1 st order wavelength of the sampled grating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fiber coupled module is fabricated with integrating the emitting light from four laser diode bars into multimode fiber bundle. The continuous wave (CW) output power of the module is about 130 W with a coupling efficiency of around 80%. The output power is very stable after the temperature cycling and vibration test. No apparent power decrease has been observed as the device working continuously for 500 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.3 mu m strained-layer multi-quantum wells complex-coupled distributed feedback lasers with a wide temperature range of 20 to 100 degrees C are reported. The low threshold current of 10mA and high single-facet slope efficiency of 0.3mW/mA were obtained for an as cleaved device. The single mode yield was as high as 80%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A broadly tunable and high-power grating-coupled external cavity laser with a tuning range of more than 200 nm and a similar to 200-mW maximum output power was realized, by utilizing a gain device with the chirped multiple quantum-dot (QD) active layers and bent waveguide structure. The chirped QD active medium, which consists of QD layers with InGaAs strain-reducing layers different in thickness, is beneficial to the broadening of the material gain spectrum. The bent waveguide structure and facet antireflection coating are both effective for the suppression of inner-cavity lasing under large injection current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. Methods: The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a Ge-68 point source, and a calibrated 68Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A Na-22 point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of F-18-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of F-18-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of F-18-FDG and imaged for 2 h with electrocardiogram gating. Results: The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1 %. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. Conclusion: We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional correction techniques are needed to achieve quantitative imaging with such an insert.