931 resultados para C-scan test
Resumo:
A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Random Access Scan, which addresses individual flip-flops in a design using a memory array like row and column decoder architecture, has recently attracted widespread attention, due to its potential for lower test application time, test data volume and test power dissipation when compared to traditional Serial Scan. This is because typically only a very limited number of random ``care'' bits in a test response need be modified to create the next test vector. Unlike traditional scan, most flip-flops need not be updated. Test application efficiency can be further improved by organizing the access by word instead of by bit. In this paper we present a new decoder structure that takes advantage of basis vectors and linear algebra to further significantly optimize test application in RAS by performing the write operations on multiple bits consecutively. Simulations performed on benchmark circuits show an average of 2-3 times speed up in test write time compared to conventional RAS.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be similar to 10% after 7000 accelerated potential-cycles as against similar to 60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand > 10 000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.
Resumo:
Hepatitis C virus (HCV), a member of Flaviviridae, encoding a positive-sense single-stranded RNA translates by cap-independent mechanism using the internal ribosome entry site (IRES) present in the 5' UTR of the virus. The IRES has complex stem loop structures and is capable of recruiting the 40S ribosomal subunit in a factor-independent fashion. As the IRES sequence is highly conserved throughout the HCV genotypes and the translation is the first obligatory step of the HCV life cycle, the IRE'S-mediated translation, or more specifically, the ribosome HCV RNA interaction is an attractive target to design effective antivirals. This article will focus on the mechanism of the HCV IRES translation and the various ways in which the interaction of ribosome and IRES has been targeted.
Resumo:
The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV.
Resumo:
We present a detailed study on the behavior of vinylcyclopropanes as masked donor acceptor system toward the stereoselective synthesis of Z-alkylidenetetrahydrofurans. Results of bromenium catalyzed indirect activation of C-C bond of vinylcyclopropanes and concomitant cyclization to alkylidenetetrahydrofuran and other heterocycles have been discussed. The stereoselective formation of the Z-isomer is strongly controlled by the extent of destabilization of one of the gauche conformers of the vinylcyclopropane. The ring-opening/cyclization step was found to be stereospecific as in the case of DA cyclopropanes. The activation of the C-C bond leads to a tight-carbocation intermediate, which is evident from the complete retention of the stereochemistry. The retention of configuration has been established by a necessary control experiment that rules out the possibility of a double inversion pathway. The present results serve as direct stereochemical evidence in support of a tight ion-pair intermediate versus the controversial S(N)2 pathway. A 2D potential energy scan has been carried out at B3LYP/6-31G(d) level theory to obtain the relative energies of the conformers. The Z-selectivity observed has been explained on the basis of the relative population of the conformers and modeling the intermediate and transition state involved in the reaction at M06-2x/6-31+G(d) level. Energy profile for the cyclization step was modeled considering various possible pathways through which cyclization can happen. The methodology has been successfully demonstrated on vinylcyclobutanes as well.
Resumo:
Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.
Resumo:
Detection of explosives, especially trinitrotoluene (TNT), is of utmost importance due to its highly explosive nature and environmental hazard. Therefore, detection of TNT has been a matter of great concern to the scientific community worldwide. Herein, a new aggregation-induced phosphorescent emission (AIPE)-active iridium(III) bis(2-(2,4-difluorophenyl)pyridinato-NC2') (2-(2-pyridyl)benzimidazolato-N,N') complex FIrPyBiz] has been developed and serves as a molecular probe for the detection of TNT in the vapor phase, solid phase, and aqueous media. In addition, phosphorescent test strips have been constructed by impregnating Whatman filter paper with aggregates of FIrPyBiz for trace detection of TNT in contact mode, with detection limits in nanograms, by taking advantage of the excited state interaction of AIPE-active phosphorescent iridium(III) complex with that of TNT and the associated photophysical properties.
Resumo:
A supercritical CO2 test facility is currently being developed at Indian Institute of Science, Bangalore, India to analyze the performance of a closed loop Brayton cycle for concentrated solar power (CSP) generation. The loop has been designed for an external heat input of 20 kW a pressure range of 75-135 bar, flow rate of 11 kg/min, and a maximum cycle temperature of 525 degrees C. The operation of the loop and the various parametric tests planned to be performed are discussed in this paper The paper addresses various aspects of the loop design with emphasis on design of various components such as regenerator and expansion device. The regenerator design is critical due to sharp property variations in CO2 occurring during the heat exchange process between the hot and cold streams. Two types of heat exchanger configurations 1) tube-in-tube (TITHE) and 2) printed circuit heat exchanger (PCHE) are analyzed and compared. A PCHE is found to be similar to 5 times compact compared to a TITHE for identical heat transfer and pressure drops. The expansion device is being custom designed to achieve the desired pressure drop for a range of operating temperatures. It is found that capillary of 5.5 mm inner diameter and similar to 2 meter length is sufficient to achieve a pressure drop from 130 to 75 bar at a maximum cycle temperature of 525 degrees C.
Resumo:
Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.
Resumo:
Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.