989 resultados para C-kit Protooncogene
Resumo:
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.
Resumo:
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.
Resumo:
Variants in the EDNRB, KIT, MITF, PAX3 and TRPM1 genes are known to cause white spotting phenotypes in horses, which can range from the common white markings up to completely white horses. In this study, we investigated these candidate genes in 169 horses with white spotting phenotypes not explained by the previously described variants. We identified a novel missense variant, PAX3:p.Pro32Arg, in Appaloosa horses with a splashed white phenotype in addition to their leopard complex spotting patterns. We also found three novel variants in the KIT gene. The splice site variant c.1346+1G>A occurred in a Swiss Warmblood horse with a pronounced depigmentation phenotype. The missense variant p.Tyr441Cys was present in several part-bred Arabians with sabino-like depigmentation phenotypes. Finally, we provide evidence suggesting that the common and widely distributed KIT:p.Arg682His variant has a very subtle white-increasing effect, which is much less pronounced than the effect of the other described KIT variants. We termed the new KIT variants W18-W20 to provide a simple and unambiguous nomenclature for future genetic testing applications.
Resumo:
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white-born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white-born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid-coloured controls. To the authors' knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.
Resumo:
El control, o cancelación activa de ruido, consiste en la atenuación del ruido presente en un entorno acústico mediante la emisión de una señal igual y en oposición de fase al ruido que se desea atenuar. La suma de ambas señales en el medio acústico produce una cancelación mutua, de forma que el nivel de ruido resultante es mucho menor al inicial. El funcionamiento de estos sistemas se basa en los principios de comportamiento de los fenómenos ondulatorios descubiertos por Augustin-Jean Fresnel, Christiaan Huygens y Thomas Young entre otros. Desde la década de 1930, se han desarrollado prototipos de sistemas de control activo de ruido, aunque estas primeras ideas eran irrealizables en la práctica o requerían de ajustes manuales cada poco tiempo que hacían inviable su uso. En la década de 1970, el investigador estadounidense Bernard Widrow desarrolla la teoría de procesado adaptativo de señales y el algoritmo de mínimos cuadrados LMS. De este modo, es posible implementar filtros digitales cuya respuesta se adapte de forma dinámica a las condiciones variables del entorno. Con la aparición de los procesadores digitales de señal en la década de 1980 y su evolución posterior, se abre la puerta para el desarrollo de sistemas de cancelación activa de ruido basados en procesado de señal digital adaptativo. Hoy en día, existen sistemas de control activo de ruido implementados en automóviles, aviones, auriculares o racks de equipamiento profesional. El control activo de ruido se basa en el algoritmo fxlms, una versión modificada del algoritmo LMS de filtrado adaptativo que permite compensar la respuesta acústica del entorno. De este modo, se puede filtrar una señal de referencia de ruido de forma dinámica para emitir la señal adecuada que produzca la cancelación. Como el espacio de cancelación acústica está limitado a unas dimensiones de la décima parte de la longitud de onda, sólo es viable la reducción de ruido en baja frecuencia. Generalmente se acepta que el límite está en torno a 500 Hz. En frecuencias medias y altas deben emplearse métodos pasivos de acondicionamiento y aislamiento, que ofrecen muy buenos resultados. Este proyecto tiene como objetivo el desarrollo de un sistema de cancelación activa de ruidos de carácter periódico, empleando para ello electrónica de consumo y un kit de desarrollo DSP basado en un procesador de muy bajo coste. Se han desarrollado una serie de módulos de código para el DSP escritos en lenguaje C, que realizan el procesado de señal adecuado a la referencia de ruido. Esta señal procesada, una vez emitida, produce la cancelación acústica. Empleando el código implementado, se han realizado pruebas que generan la señal de ruido que se desea eliminar dentro del propio DSP. Esta señal se emite mediante un altavoz que simula la fuente de ruido a cancelar, y mediante otro altavoz se emite una versión filtrada de la misma empleando el algoritmo fxlms. Se han realizado pruebas con distintas versiones del algoritmo, y se han obtenido atenuaciones de entre 20 y 35 dB medidas en márgenes de frecuencia estrechos alrededor de la frecuencia del generador, y de entre 8 y 15 dB medidas en banda ancha. ABSTRACT. Active noise control consists on attenuating the noise in an acoustic environment by emitting a signal equal but phase opposed to the undesired noise. The sum of both signals results in mutual cancellation, so that the residual noise is much lower than the original. The operation of these systems is based on the behavior principles of wave phenomena discovered by Augustin-Jean Fresnel, Christiaan Huygens and Thomas Young. Since the 1930’s, active noise control system prototypes have been developed, though these first ideas were practically unrealizable or required manual adjustments very often, therefore they were unusable. In the 1970’s, American researcher Bernard Widrow develops the adaptive signal processing theory and the Least Mean Squares algorithm (LMS). Thereby, implementing digital filters whose response adapts dynamically to the variable environment conditions, becomes possible. With the emergence of digital signal processors in the 1980’s and their later evolution, active noise cancellation systems based on adaptive signal processing are attained. Nowadays active noise control systems have been successfully implemented on automobiles, planes, headphones or racks for professional equipment. Active noise control is based on the fxlms algorithm, which is actually a modified version of the LMS adaptive filtering algorithm that allows compensation for the acoustic response of the environment. Therefore it is possible to dynamically filter a noise reference signal to obtain the appropriate cancelling signal. As the noise cancellation space is limited to approximately one tenth of the wavelength, noise attenuation is only viable for low frequencies. It is commonly accepted the limit of 500 Hz. For mid and high frequencies, conditioning and isolating passive techniques must be used, as they produce very good results. The objective of this project is to develop a noise cancellation system for periodic noise, by using consumer electronics and a DSP development kit based on a very-low-cost processor. Several C coded modules have been developed for the DSP, implementing the appropriate signal processing to the noise reference. This processed signal, once emitted, results in noise cancellation. The developed code has been tested by generating the undesired noise signal in the DSP. This signal is emitted through a speaker simulating the noise source to be removed, and another speaker emits an fxlms filtered version of the same signal. Several versions of the algorithm have been tested, obtaining attenuation levels around 20 – 35 dB measured in a tight bandwidth around the generator frequency, or around 8 – 15 dB measured in broadband.
Resumo:
The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.
Resumo:
Assembly and mutual proximities of α, β, and γc subunits of the interleukin 2 receptors (IL-2R) in plasma membranes of Kit 225 K6 T lymphoma cells were investigated by fluorescence resonance energy transfer (FRET) using fluorescein isothiocyanate- and Cy3-conjugated monoclonal antibodies (mAbs) that were directed against the IL-2Rα, IL-2Rβ, and γc subunits of IL-2R. The cell-surface distribution of subunits was analyzed at the nanometer scale (2–10 nm) by FRET on a cell-by-cell basis. The cells were probed in resting phase and after coculture with saturating concentrations of IL-2, IL-7, and IL-15. FRET data from donor- and acceptor-labeled IL-2Rβ-α, γ-α, and γ-β pairs demonstrated close proximity of all subunits to each other in the plasma membrane of resting T cells. These mutual proximities do not appear to represent mAb-induced microaggregation, because FRET measurements with Fab fragments of the mAbs gave similar results. The relative proximities were meaningfully modulated by binding of IL-2, IL-7, and IL-15. Based on FRET analysis the topology of the three subunits at the surface of resting cells can be best described by a “triangular model” in the absence of added interleukins. IL-2 strengthens the bridges between the subunits, making the triangle more compact. IL-7 and IL-15 act in the opposite direction by opening the triangle possibly because they associate their private specific α receptors with the β and/or γc subunits of the IL-2R complex. These data suggest that IL-2R subunits are already colocalized in resting T cells and do not require cytokine-induced redistribution. This colocalization is significantly modulated by binding of relevant interleukins in a cytokine-specific manner.
Resumo:
The mouse rump white (Rw) mutation causes a pigmentation defect in heterozygotes and embryonic lethality in homozygotes. At embryonic day (E) 7.5, Rw/Rw embryos are retarded in growth, fail to complete neurulation and die around E 9.5. The Rw mutation is associated with a chromosomal inversion spanning 30 cM of the proximal portion of mouse chromosome 5. The Rw embryonic lethality is complemented by the W19H deletion, which spans the distal boundary of the Rw inversion, suggesting that the Rw lethality is not caused by the disruption of a gene at the distal end of the inversion. Here, we report the molecular characterization of sequences disrupted by both inversion breakpoints. These studies indicate that the distal breakpoint of the inversion is associated with ectopic Kit expression and therefore may be responsible for the dominant pigmentation defect in Rw/+ mice; whereas the recessive lethality of Rw is probably due to the disruption of the gene encoding dipeptidyl aminopeptidase-like protein 6, Dpp6 [Wada, K., Yokotani, N., Hunter, C., Doi, K., Wenthold, R. J. & Shimasaki, S. (1992) Proc. Natl. Acad. Sci. USA 89, 197–201] located at the proximal inversion breakpoint.
Resumo:
Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.
Resumo:
Mode of access: Internet.
Resumo:
"November 1994."
Resumo:
Issued without t.p. Title supplied fron SPEC flyer no. 30, Nov. 1976.
Resumo:
Accompanied by "SPEC flyer 211."
Resumo:
"May 1997."