942 resultados para C-60 ADDUCTS
Resumo:
In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.
Resumo:
In this study thermodynamically stable dispersions of amorphous quinine, a model BCS class 2 therapeutic agent, within an amorphous polymeric platform (HPC), termed a solid-in-solid dispersion, were produced using hot melt extrusion. Characterisation of the pre-extrudates and extrudates was performed using hyper-differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Raman spectroscopy. Water uptake by the raw materials was determined using dynamic vapour sorption (DVS) analysis. Furthermore, the presence or absence of crystalline drug following storage at 25 °C/60% relative humidity and 40 °C/75% relative humidity in a sealed glass jar, and at 40 °C/75% relative humidity in an open glass jar for 3 months was determined using PXRD. Amorphous quinine was generated in situ during extrusion from both quinine base (5%, 10%, 20% w/w drug loading) and from quinine hydrochloride (5%, 10% w/w drug loading) and remained thermodynamically stable as a solid-in-solid dispersion within the HPC extrudates. When processed with HPC, quinine hydrochloride (20% w/w) was converted to amorphous quinine hydrochloride. Whilst stable for up to 3 months when stored under sealed conditions, this amorphous form was unstable, resulting in recrystallisation of the hydrochloride salt following storage for 1 month at 40 °C/75% relative humidity in an open glass jar. The behaviour of the amorphous quinine hydrochloride (20% w/w) HPC extrudate was related, at least in part, to the lower stability and the hygroscopic properties of this amorphous form.
Resumo:
Purpose The aim of this work was to examine, for amorphous solid dispersions, how the thermal analysis method selected impacts on the construction of thermodynamic phase diagrams, and to assess the predictive value of such phase diagrams in the selection of optimal, physically stable API-polymer compositions. Methods Thermodynamic phase diagrams for two API/polymer systems (naproxen/HPMC AS LF and naproxen/Kollidon 17 PF) were constructed from data collected using two different thermal analysis methods. The “dynamic” method involved heating the physical mixture at a rate of 1 &[deg]C/minute. In the "static" approach, samples were held at a temperature above the polymer Tg for prolonged periods, prior to scanning at 10 &[deg]C/minute. Subsequent to construction of phase diagrams, solid dispersions consisting of API-polymer compositions representative of different zones in the phase diagrams were spray dried and characterised using DSC, pXRD, TGA, FTIR, DVS and SEM. The stability of these systems was investigated under the following conditions: 25 &[deg]C, desiccated; 25 &[deg]C, 60 % RH; 40 &[deg]C, desiccated; 40 &[deg]C, 60 % RH. Results Endset depression occurred with increasing polymer volume fraction (Figure 1a). In conjunction with this data, Flory-Huggins and Gordon-Taylor theory were applied to construct thermodynamic phase diagrams (Figure 1b). The Flory-Huggins interaction parameter (&[chi]) for naproxen and HPMC AS LF was + 0.80 and + 0.72, for the dynamic and static methods respectively. For naproxen and Kollidon 17 PF, the dynamic data resulted in an interaction parameter of - 1.1 and the isothermal data produced a value of - 2.2. For both systems, the API appeared to be less soluble in the polymer when the dynamic approach was used. Stability studies of spray dried solid dispersions could be used as a means of validating the thermodynamic phase diagrams. Conclusion The thermal analysis method used to collate data has a deterministic effect on the phase diagram produced. This effect should be considered when constructing thermodynamic phase diagrams, as they can be a useful tool in predicting the stability of amorphous solid dispersions.
Resumo:
"L’auteur présente une analyse générale de l’évolution historique et des développements récents du régime des droits d’auteur au Canada. Avec le développement des nouvelles technologies de l’information, et plus spécifiquement de l’Internet, le régime canadien des droits d’auteur nécessiterait d’importantes réformes. L’auteur déplore toutefois les modifications récentes issues de la loi C-60. En effet, selon lui, ces changements ne correspondent pas au régime international proposé par l’Organisation Mondiale de Propriété Intellectuelle. En fait, ceux-ci cadrent beaucoup plus avec la perspective américaine de protection limitative des droits d’auteur. Michael Geist trace d’abord l’historique du développement du régime de protection des droits d’auteur au Canada. Il souligne notamment les modifications législatives importantes de la fin des années 1980 et 1990 qui visaient à renforcer les règles de reconnaissance et de protection des droits que les auteurs canadiens possèdent sur leurs œuvres. Parallèlement, à ces modifications législatives, la Cour Suprême du Canada s’est aussi prononcée sur la question des droits d’auteur en interprétant limitativement la portée de ce régime, facilitant ainsi l’accès des œuvres artistiques au domaine public. L’auteur souligne les divergences et les contradictions entre la conception législative et celle jurisprudentielle de la fonction du régime canadien des droits d’auteur. Le législateur canadien a récemment proposé une nouvelle modification du régime de droits d’auteurs qui consisterait en l’extension des délais obligatoire avant qu’une œuvre couverte par le régime ne soit incluse dans le domaine public. Michael Geist s’oppose à une telle modification et soutient qu’elle entraînerait de nombreuses conséquences négatives pour les auteurs et les artistes canadiens. En effet, cette modification limiterait l’accès des auteurs aux oeuvres antérieures, elle entraverait les opportunités et les capacités commerciales des œuvres canadiennes et restreindrait les domaines de recherche académique. L’auteur aborde par la suite la problématique reliée aux ""Mesures de Protection Techniques"" et à la législation qui les encadre. En analysant les problèmes causés par ces mesures aux États-Unis, il présente leurs effets nuisibles pour les domaines fondamentaux de la liberté de parole et de la recherche académique. Les réformes possibles du régime canadien des droits d’auteur se situent dans une perspective plus ouverte du régime de protection et de promotion des œuvres canadiennes. Ces réformes auraient l’avantage de promouvoir et de protéger les œuvres canadiennes tout en évitant les problèmes causés par les mesures trop limitatives. À ce sujet, l’auteur propose l’établissement d’une bibliothèque digitale nationale, l’abrogation des droits d’auteur de la couronne et un nouveau régime permettant l’utilisation du matériel radiodiffusé de la Société Radio-Canada."
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
P>1. Management of lowland mesotrophic grasslands in north-west Europe often makes use of inorganic fertilizers, high stocking densities and silage-based forage systems to maximize productivity. The impact of these practices has resulted in a simplification of the plant community combined with wide-scale declines in the species richness of grassland invertebrates. We aim to identify how field margin management can be used to promote invertebrate diversity across a suite of functionally diverse taxa (beetles, planthoppers, true bugs, butterflies, bumblebees and spiders). 2. Using an information theoretic approach we identify the impacts of management (cattle grazing, cutting and inorganic fertilizer) and plant community composition (forb species richness, grass species richness and sward architecture) on invertebrate species richness and body size. As many of these management practices are common to grassland systems throughout the world, understanding invertebrate responses to them is important for the maintenance of biodiversity. 3. Sward architecture was identified as the primary factor promoting increased species richness of both predatory and phytophagous trophic levels, as well as being positively correlated with mean body size. In all cases phytophagous invertebrate species richness was positively correlated with measures of plant species richness. 4. The direct effects of management practices appear to be comparatively weak, suggesting that their impacts are indirect and mediated though the continuous measures of plant community structure, such as sward architecture or plant species richness. 5. Synthesis and applications. By partitioning field margins from the remainder of the field, economically viable intensive grassland management can be combined with extensive management aimed at promoting native biodiversity. The absence of inorganic fertilizer, combined with a reduction in the intensity of both cutting and grazing regimes, promotes floral species richness and sward architectural complexity. By increasing sward architecture the total biomass of invertebrates also increased (by c. 60% across the range of sward architectural measures seen in this study), increasing food available for higher trophic levels, such as birds and mammals.
Resumo:
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C-60 and C-70). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.
Resumo:
Lipid oxidation was studied in beef and chicken muscle after high pressure treatment (0.1-800 MPa) at different temperatures (20-70 degrees C for 20 min, prior to storage at 4 degrees C for 7 days. Pressure treatment of beef samples at room temperature led to increases in TBARS values after 7 days storage at 4 degrees C; however, the increases were more marked after treatment at pressures >= 400 MPa (at least fivefold) than after treatment at lower pressures (less than threefold). Similar results were found in those samples treated at 40 degrees C, but at 60 degrees C and 70 degrees C pressure had little additional effect on the oxidative stability of the muscle. Pressure treatments of 600 MPa and 800 MPa, at all temperatures. induced increased rates of lipid oxidation in chicken muscle, but, in general, chicken muscle was more stable than beef to pressure. and the catalytic effect of pressure was still seen at the higher temperatures of 50 degrees C, 60 degrees C and 70 degrees C. The addition of 1%, Na(2)EDTA decreased TBARS values of the beef muscle during storage and inhibited the increased rates of lipid oxidation induced by pressure. The inhibition by vitamin E (0.05% w/w) and BHT (0.02% w/w), either alone or in combination, were less marked than seen with Na(2)EDTA, suggesting that transition metal ions released from insoluble complexes are of major importance in catalysing lipid oxidation in pressure-treated muscle foods. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Grasslands restoration is a key management tool contributing to the long-term maintenance of insect populations, providing functional connectivity and mitigating against extinction debt across landscapes. As knowledge of grassland insect communities is limited, the lag between the initiation of restoration and the ability of these new habitats to contribute to such processes is unclear. Using ten data sets, ranging from 3 to 14 years, we investigate the lag between restoration and the establishment of phytophagous beetle assemblages typical of species rich grasslands. We used traits and ecological characteristics to determine factors limiting beetle colonisation, and also considered how food-web structure changed during restoration. For sites where seed addition of host-plants occurred the success in replicating beetle assemblages increased over time following a negative exponential function. Extrapolation beyond the existing data set tentatively suggested that success would plateau after 20 years, representing a c. 60% increase in assemblage similarity to target grasslands. In the absence of seed addition, similarity to the target grasslands showed no increase over time. Where seed addition was used the connectance of plant-herbivore food webs decreased over time, approaching values typical of species rich grasslands after c. 7 years. This trend was, however, dependent on the inclusion of a single site containing data in excess of 6 years of restoration management. Beetles not capable of flight, those showing high degrees of host-plant specialisation and species feeding on nationally rare host plants take between 1 and 3 years longer to colonise. Successful grassland restoration is underpinned by the establishment of host-plants, although individual species traits compound the effects of poor host-plant establishment to slow colonisation. The use of pro-active grassland restoration to mitigate against future environmental change should account for lag periods in excess of 10 years if the value of these habitats is to be fully realised.
Resumo:
In this work, a systematic study of SO2 molecules interacting with pristine and transition metal (TM) covered C-60 is presented by means of first principles calculations. It is observed that the SO2 molecule interacts weakly with the pristine C-60 fullerene, although the resulting interaction is largely increased when the C-60 structure is covered with Fe, Mn, or Ti atoms and the SO2 Molecules are bounded through the TM atoms. The number of bounded SO2 molecules per TM atoms, in addition to the elevated binding energies per molecules, allows us to conclude that such composites can be used as a template for efficient devices to remove SO2 molecules or, alternatively, as SO2 gas sensor.
Resumo:
We investigate the impact of hydroxyl groups on the properties of C(60)(OH)(n) systems, with n = 1, 2, 3, 4, 8, 10, 16, 18, 24, 32 and 36 by means of first-principles density functional theory calculations. A detailed analysis from the local density of states has shown that adsorbed OH groups can induce dangling bonds in specific carbon atoms around the adsorption site. This increases the tendency to form polyhydroxylated fullerenes (fullerenols). The structural stability is analyzed in terms of the calculated formation enthalpy of each species. Also, a careful examination of the electron density of states for different fullerenols shows the possibility of synthesizing single molecules with tunable optical properties.
Resumo:
A carbocisteína é um mucolítico utilizado nos tratamentos sintomáticos das infecções respiratórias, comercializado sem prescrição médica. Cabe ao produtor garantir a qualidade, eficiência e segurança do produto durante o período de validade. A fim de determinar o prazo de validade do produto farmacêutico realizou-se o estudo de estabilidade acelerado, onde através de fatores extrínsecos buscou-se a degradação do fármaco. Arrhenius propôs uma equação através da qual é possível determinar a energia de ativação presente em uma reação química e correlacionou a cinética química à temperatura. O prazo de validade do xarope de carbocisteína foi determinado através da aplicação do método de Arrhenius. A metodologia de análise do produto foi validada quanto a linearidade, precisão, exatidão, limite de detecção, limite de quantificação, robustez e especificidade. Amostras da preparação farmacêutica foram submetidas à degradação térmica nas temperaturas de 40 ºC, 50 ºC, 60 ºC e 70 ºC. A partir dos resultados analíticos aplicou-se a equação de Arrhenius e o método gráfico que determinaram um prazo de validade de 109,28 dias para o produto armazenado em condições ideais de temperatura, a 25 ºC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tanomaru-Filho M, Silveira GF, Reis JMSN, Bonetti-Filho I, Guerreiro-Tanomaru JM. Effect of compression load and temperature on thermomechanical tests for gutta-percha and Resilon (R). International Endodontic Journal, 44, 1019-1023, 2011.Aim To analyse a method used to evaluate the thermomechanical properties of gutta-percha and Resilon at different temperatures and compression loads.Methodology Two hundred and seventy specimens measuring 10 mm in diameter and 1.5 mm in height were made from the following materials: conventional gutta-percha (GCO). thermoplastic gutta-percha (GTP) and Resilon (R) cones (RE). After 24 h, the specimens were placed in water at 50 degrees C. 60 degrees C or 70 degrees C for 60 s. After that, specimens were placed between two glass slabs, and loads weighing 1.0, 3.0 or 5.0 kg were applied. Images of the specimens were digitized before and after the test and analysed using imaging software to determine their initial and final areas. The thermomechanical property of each material was determined by the difference between the initial and final areas of the specimens. Data were subjected to ANOVA and SNK tests at 5% significance. To verify a possible correlation between the results of the materials, linear regression coefficients (r) were calculated.Results Data showed higher flow area values for RE under all compression loads at 70 degrees C and under the 5.0 kg load at 60 degrees C (P < 0.05). Regarding gutta-percha, GTP showed higher flow under loads weighing 3.0 and 5.0 kg. at 60 and 70 degrees C (P < 0.05). GCO presented higher flow at 70 degrees C with a load of 5.0 kg. Regression analyses showed a poor linear correlation amongst the results of the materials under the different experimental conditions.Conclusion Gutta-percha and Resilon (R) cones require different compression loads and temperatures for evaluation of their thermomechanical properties. For all materials, the greatest flow occurred at 70 degrees C under a load of 5.0 kg: therefore. these parameters may be adopted when evaluating endodontic tilling materials.