995 resultados para Bulk carrier cargo ships


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports work involved with the automation of a Hot Metal Carrier — a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demontrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. We also describe an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inspection of marine vessels is currently performed manually. Inspectors use tools (e.g. cameras and devices for non-destructive testing) to detect damaged areas, cracks, and corrosion in large cargo holds, tanks, and other parts of a ship. Due to the size and complex geometry of most ships, ship inspection is time-consuming and expensive. The EU-funded project INCASS develops concepts for a marine inspection robotic assistant system to improve and automate ship inspections. In this paper, we introduce our magnetic wall–climbing robot: Marine Inspection Robotic Assistant (MIRA). This semiautonomous lightweight system is able to climb a vessels steel frame to deliver on-line visual inspection data. In addition, we describe the design of the robot and its building subsystems as well as its hardware and software components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the influence of lactose carrier size on drug dispersion of salmeterol xinafoate (SX) from interactive mixtures. SX dispersion was measured by using the fine particle fractions determined by a twin stage impinger attached to a Rotahaler1. The particle size of the lactose carrier in the SX interactive mixtures was varied using a range of commercial inhalation-grade lactoses. In addition, differing size fractions of individual lactose samples were achieved by dry sieving. The dispersion ofSXappeared to increase as the particle size of the lactose carrier decreased for the mixtures prepared from different particle size commercial samples of lactose and from different sieve fractions of the same lactose. Fine particles of lactose (<5 mm) associated with the lactose carrier were removed from the carrier surface by a wet decantation process to produce lactose samples with low but similar concentrations of fine lactose particles. The fine particle fractions of SX in mixtures prepared with the decanted lactose decreased significantly (analysis of variance, p<0.001) and the degree of dispersion became independent of the volume mean diameter of the carriers (analysis of variance, p<0.05). The dispersion behavior is therefore associated with the presence of fine adhered particles associated with the carriers and the inherent size of the carrier itself has little influence on dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates how to obtain accurate and reliable positioning results with global navigation satellite systems (GNSS). The work provides a theoretical framework for reliability control in GNSS carrier phase ambiguity resolution, which is the key technique for precise GNSS positioning in centimetre levels. The proposed approach includes identification and exclusion procedures of unreliable solutions and hypothesis tests, allowing the reliability of solutions to be controlled in the aspects of mathematical models, integer estimation and ambiguity acceptance tests. Extensive experimental results with both simulation and observed data sets effectively demonstrate the reliability performance characteristics based on the proposed theoretical framework and procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have designed, synthesized and utilized a new non-fullerene electron acceptor, 9,9′-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B2), for use in solution-processable bulk-heterojunction devices. B2 is based on a central fluorene moiety, which was capped at both ends with an electron-accepting naphthalenediimide functionality. B2 exhibited excellent solubility (>30 mg mL−1 in chloroform), high thermal and photochemical stability, and appropriate energy levels for use with the classical polymer donor regioregular poly(3-hexylthiophene). A power conversion efficiency of 1.16 % was achieved for primitive bulk-heterojunction devices with a high fill factor of approximately 54 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solution-processable, non-fullerene electron acceptor, 2,2′-(((5,5-dioctyl-5 H-dibenzo[b,d]silole-3,7-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))bis(1 H-indene-1,3(2 H)-dione) (called N5) comprised of dibenzosilole and 1,3-indanedione building blocks was designed, synthesized, and fully characterized. N5 is highly soluble in various organic solvents, has high thermal stability, and has energy levels matching those of archetypal donor poly(3-hexylthiophene). Solution-processable, bulk-heterojunction solar cells afforded promising power conversion efficiency of 2.76 % when N5 was used as a non-fullerene electron acceptor along with the conventional donor polymer poly(3-hexylthiophene). As per our knowledge, the material reported herein is the first example in the literature where synchronous use of such building blocks is demonstrated in the design an efficient, non-fullerene acceptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniaxial compression experiments on 0.3, 1 and 3 mu m diameter micropillars of a Zr-based bulk metallic glass in as-cast, shot-peened and structurally relaxed conditions were conducted. Shear band formation and stable propagation is observed to be the plastic deformation mode in all cases, with no detectable difference in yield strength according to either size or condition. The limitations of uniaxial compression tests in assessing the influence of various material conditions on plasticity, when it is inhomogeneous in nature, are illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.