977 resultados para Bulk Amorphous-alloys
Resumo:
Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
The instability of an amorphous indium-gallium-zinc oxide (IGZO) field effect transistor is investigated upon water treatment. Electrical characteristics are measured before, immediately after and a few days after water treatment in ambient as well as in vacuum conditions. It is observed that after a few days of water exposure an IGZO field effect transistor (FET) shows relatively more stable behaviour as compared to before exposure. Transfer characteristics are found to shift negatively after immediate water exposure and in vacuum. More interestingly, after water exposure the off current is found to decrease by 1-2 orders of magnitude and remains stable even after 15 d of water exposure in ambient as well as in vacuum, whereas the on current more or less remains the same. An x-ray photoelectron spectroscopic study is carried out to investigate the qualitative and quantitative analysis of IGZO upon water exposure. The changes in the FET parameters are evaluated and attributed to the formation of excess oxygen vacancies and changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface, which can further lead to the formation of subgap states. An attempt is made to distinguish which parameters of the FET are affected by the changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface separately.
Resumo:
The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A composite material containing uniformly distributed micrometer-sized Nb particles in a Zr-based amorphous matrix was prepared by suction cast. The resulting material exhibits high fractured strength over 1550 MPa and enhanced plastic strain of about 29.7% before failure in uniaxial compression test at room temperature. Studies of the serrations on the stress-strain curves and the shear bands on the fractured samples reveal that the amplitude of the stress drop of each serration step corresponds to the extent of the propagation of a single shear band through the materials. The composite exhibits more serration steps and smaller amplitude of stress drop due to the pinning of shear band propagation by ductile Nb particles.
Resumo:
Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.
Resumo:
(Zr65Al10Ni10Cu15)(100-x) Nb-x glass forming alloys with Nb contents ranging from 0 to 15 at.% were prepared by water-cooled copper mould cast. The alloys with different Nb contents exhibited different microstructures and mechanical properties. Unlike the monolithic Zr65Al10Ni10Cu15 bulk metallic glass, only a few primary bee beta-Ti phase dendrites were found to distribute in the glassy matrix of the alloys with x = 5. For alloys with x = 10, more beta-phase dendrites forms, together with quasicrystalline particles densely distributed in the matrix of the alloys. For alloys with x = 15, the microstructure of the alloy is dominated by a high density of fully developed P-phase dendrites and the volume fraction of quasicrystalline particles significantly decreases. Room temperature compression tests showed that the alloys with x = 5 failed at 1793 MPa and exhibited an obvious plastic strain of 3.05%, while the other samples all failed in a brittle manner. The ultimate fracture strengths are 1793, 1975 and 1572 MPa for the alloys with x = 0, 10 and 15 at.% Nb, respectively.
Resumo:
Glass transition and crystallization process of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). It is shown that the glass transition and onset crystallization temperature determined by DMTA at a heating rate of 0.167 K/s are 480 and 588 K respectively. The crystallization process of the metallic glass is concluded as follows: amorphous alpha-->alpha' + metastable FeNdAl novel phase -->alpha' + primary delta phase-->primary delta phase + eutectic delta phase Nd3Al phase + Nd3Co phase. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of amorphous phase.
Resumo:
We report ductile bulk metallic glasses based on martensitic alloys. The slowly cooled specimens contain a mixture of parent 'austenite' and martensite phase. The slightly faster cooled bulk metallic glasses with 2-5 nm sized 'austenite'-like crystalline cluster reveal high strength and large ductility (16%). Shear bands propagate in a slither mode in this spatially inhomogeneous glassy structure and undergo considerable 'thickening' from 5-25 nm. A 'stress induced displacive transformation' is proposed to be responsible for both plasticity and work-hardening-like behavior of these 'M-Glasses'.
Resumo:
Magnetic domain structure of Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic-force microscopy. In the magnetic-force images it is shown that the exchange-interaction-type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. The existence of the large-scale domains demonstrates that the magnetic moments of a great deal of short-scale ordered atomic clusters in the BMG have been aligned by exchange coupling. Annealing at 715 K leads to partial crystallization of the BMG. However, the exchange coupling is stronger in the annealed sample, which is considered to arise from the increase of transition-metal concentration in the amorphous phase due to the precipitation of Nd crystalline phase.
Resumo:
Bulk metallic glasses of Nd65Al10Fe25-xCox (x=0,5,10) have been prepared in the form of 3 mm diam rods. Results of differential scanning calrimetry, dynamic mechanical thermal analysis (DMTA), and x-ray diffraction are presented for these alloys. It is shown that the glass transition and crystallization have been observed by DMTA. The reduced glass transition temperature of these glasses, defined as the ratio between the glass transition temperature T-g and the melting temperature T-l is in the range from 0.55 to 0.62. All these glasses have a large supercooled liquid region (SLR), ranging from 80 to 130 K. The high value of reduced glass transition temperature and wide SLR agree with their good glass formation ability.
Resumo:
Glass transition and thermal stability of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The glass transition temperature, not revealed by DSC, is alternatively determined by DMTA via storage modulus E' and loss modulus E" measurement to be 498 K at a heating rate of 0.167 K s (-1). The calculated reduced glass transition temperature (T-g/T-m) is 0.63. The large value of T-g/T-m of this alloy is consistent with its good glass-forming ability. The crystallization process of the metallic glass is concluded as follows: amorphous --> amorphous + metastable FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of the amorphous phase. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs. (C) 2008 American Institute of Physics.
Resumo:
Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore, it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conventional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work, the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was investigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow, the typical plastic deformation feature of BMGs, could not be found in as-cast and partially crystallized samples during nanoindentation. In addition, the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.
Resumo:
We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimensionless Deborah number De(ID) = t(r)/t(i) is proposed to characterize the rate effect in BMGs, where t(r) is the structural relaxing characteristic time of BMGs under shear load, t(i) is the macroscopic imposed characteristic time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the modified free volume model can characterize the strain rate effect in BMGs effectively.
Resumo:
Zr49Cu46Al5 and Zr48.5Cu46.5Al5 bulk metallic glasses(BMGs) with diameter of 5 mm were prepared through water-cooled copper mold casting. The phase structures of the two alloys were identified by X-ray diffractometry(XRD). The thermal stability was examined by differential scanning calorimetry(DSC). Zr49Cu46Al5 alloy shows a glass transition temperature, T, of about 689 K, an crystallization temperature, T-x, of about 736 K. The Zr48.5Cu46.5Al5 alloy shows no obvious exothermic peak. The microstructure of the as-cast alloys was analyzed by transmission electron microscopy(TEM). The aggregations of CuZr and CuZr2 nanocrystals with grain size of about 20 nm are observed in Zr49Cu46Al5 nanocrystalline composite, while the Zr48.5Cu46.5Al5 alloy containing many CuZr martensite plates is crystallized seriously. Mechanical properties of bulk Zr49Cu46Al5 nanocrystalline composite and Zr48.5Cu46.5Al5 alloy measured by compression tests at room temperature show that the work hardening ability of Zr48.5Cu46.5Al5 alloy is larger than that of Zr48.5Cu46.5Al5 alloy.