965 resultados para Brittle tectonics
Resumo:
The Teggiolo zone is the sedimentary cover of the Antigorio nappe, one of the lowest tectonic units of the Penninic Central Alps. Detailed mapping, stratigraphic and structural analyses, and comparisons with less metamorphic series in several well-studied domains of the Alps, provide a new stratigraphic interpretation. The Teggiolo zone is comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, which cover the time span from Triassic to Eocene. At Mid-Jurassic times it appears as an uplifted, partially emergent block, marking the southern limit of the main Helvetic basin (the Limiting South-Helvetic Rise LSHR). The main mass of the Teggiolo calcschists, whose base truncates the Triassic-Jurassic cycles and can erode the Antigorio basement, consists of fine-grained clastic sediments analogous to the deep-water flyschoid deposits of Late Cretaceous to Eocene age in the North-Penninic (or Valais s.l.) basins. Thus the Antigorio-Teggiolo domain occupies a crucial paleogeographic position, on the boundary between the Helvetic and Penninic realms: from Triassic to Early Cretaceous its affinity is with the Helvetic; at the end of Cretaceous it is incorporated into the North-Penninic basins. An unexpected result is the discovery of the important role played by complex formations of wildflysch type at the top of the Teggiolo zone. They contain blocks of various sizes. According to their nature, three different associations are distinguished that have specific vertical and lateral distributions. These blocks give clues to the existence of territories that have disappeared from the present-day level of observation and impose constraints on the kinematics of early folding and embryonic nappe emplacement. Tectonics produced several phases of superimposed folds and schistosities, more in the metasediments than in the gneissic basement. Older deformations that predate the amplification of the frontal hinge of the nappe generated the dominant schistosity and the km-wide Vanzèla isoclinal fold.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The main objective of the present study is to model the gravity fields in terms of lithospheric structure below the western continental margin of India (WCMI) identify zones of crustal mass anomalies and attempt to infer the location of Ocean Continent transition in the Arabian Sea. In this study, the area starting from the western shield margin to the region covering the deep oceanic parts of the Arabian Sea which is bounded by Carlsberg and Cerg and Central Indian ridges in the south, eastern part of the Indus Cone in the west and falling between 630E and 800E longitudes, and 50N - 240N latitudes has been considered. The vast amount of seismic reflection and refraction data in the form of crustal velocities, basement configuration and crustal thicknesses available for the west coast as well as the eastern Arabian Sea has been utilized for this purpose
Resumo:
The Mantiqueira Province represents a series of supracrustal segments of the South-American counterpart formed during the Gondwana Supercontinent agglutination. In this crustal domain, the process of escape tectonics played a conspicuous role, generating important NE-N-S-trending lineaments. The oblique component of the motions of the colliding tectonic blocks defined the transpressional character of the main suture zones: Lancinha-Itariri, Cubato-Arcadia-Areal, Serrinha-Rio Palmital in the Ribeira Belt and Sierra Ballena-Major Gercino in the Dom Feliciano Belt. The process as a whole lasted for ca. 60 Ma, since the initial collision phase until the lateral escape phase predominantly marked by dextral and subordinate sinistral transpressional shear zones. In the Dom Feliciano Belt, southern Brazil and Uruguay, transpressional event at 630-600 Ma is recognized and in the Ribeira Belt, despite less coevally, the transpressional event occurred between 590 and 560 Ma in its northern-central portion and between ca. 625 and 595 Ma in its central-southern portion. The kinematics of several shear zones with simultaneous movement in opposite directions at their terminations is explained by the sinuosity of these lineaments in relation to a predominantly continuous westward compression.
Resumo:
Late Quaternary deposits in the northeastern Brazil have been scarcely investigated, despite their relevance to the discussion of the post-rift evolution of the South American passive margin within the context of landform, sea level and tectonic deformation. Sedimentological, stratigraphic and morphological characterization of these deposits, referred as Post-Barreiras Sediments, led to their distinction from underlying Early/Middle Miocene strata. Based on optically stimulated luminescence (OSL) dating, two sedimentary units (PB1 and PB2) were recognized and related to the time intervals between 74.8 +/- 9.3 and 30.8 +/- 6.9 ka, and 8.8 +/- 0.9 and 1.8 +/- 0.2 ka, respectively. Unit PB1 consists of indurated sandstones and breccias either with massive bedding or complex types of soft sediment deformation structures generated by contemporaneous seismic activity. Unit PB2 is composed of massive sands or sands related to structures developed by dissipation of dunes. The present work, focusing on the Post-Barreiras Sediments, discusses landform, sea level and tectonics of the eastern South American passive margin during the latest Quaternary. Non-deposition and sub-aerial exposure related to the Tortonian worldwide low sea level combined with tectonic quiescence followed the Miocene transgression. Tectonic deformation in the latest Pleistocene created space to accommodate unit PB1 in downthrown faulted blocks and, perhaps, also synclines produced by strike-slip deformation. Although deposition of this unit was simultaneous with the progressive fall in sea level that followed the Last Interglacial Maximum, punctuated rises combined with land subsidence led to marine deposition close to the modern coastline. Renewed subsidence in the Holocene gave rise to accommodation of the Post-Barreiras Sediments. Most of unit PB2 was deposited during the Holocene Transgression, but it is not composed of marine sediments, which suggests either an insignificant rise in relative sea level or aeolian reworking of thin transgressive sands. The data presented here lead to a review of the evolution of the South American passive margin based on assumptions of uniform sedimentation and undeformed planation surfaces over a wide coastal area of the northeastern Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Stratigraphic intervals characterized by varied and complex styles of soft-sediment deformation structures are well preserved in Miocene and Late Pleistocene to Holocene deposits of a sedimentary basin located in Northeastern Brazil. The Miocene strata, represented by the Barreiras Formation, record only brittle structures, including numerous faults and fractures with straight and high angle-dipping planes that are often filled with sands derived from overlying beds. Folds consisting of broad anticlines and synclines are also present in this unit. The late Pleistocene to Holocene deposits, named Post-Barreiras Sediments, contain an indurated sandy package with a large variety of ductile and brittle deformation structures (i.e., massive sandstones with isolated sand fragments and breccias, undulatory strata, sand dykes and diapirs, sinks and bowls, pebbly pockets, plunged sediment mixtures, fitted sand masses, cone-shaped cracks, fault grading and sedimentary enclaves). These features, confined to sharp-based stratigraphic horizons that progressively grade downward into undisturbed deposits, are related to seismic shocks of high surface-wave magnitude (i.e., Ms>5 or 6). Amalgamated seismites suggest that previously formed seismites were affected by subsequent seismic-wave propagation. Seismic waves caused by activity along one, or most likely, several tectonic structures would have propagated throughout the depositional environment, producing laterally extensive seismites. The close proximity to earthquake epicenters would have promoted pervasive re-sedimentation due to pore overpressure, resulting high volumes of massive sandstones and breccia. The similarity between deposits with correlatable strata from many other areas along the Brazilian coast allows raise the hypothesis that the seismic episodes might have affected sedimentation patterns in a large (i.e., extension of several hundreds of kilometers) geographic area. Thus, the modern seismicity recorded along Northeastern Brazil was recurrent during the Quaternary and, perhaps, also in the Pliocene. The estimated high magnitude of the seismic events and the great regional extent of the affected area demonstrate that the Brazilian coast experienced tectonic stress through the last geological episodes of its evolution, which would have favored sediment accumulation and penecontemporaneous re-sedimentation. This geological context is unexpected in a passive margin, inducing to revisit the debate on how active is a passive margin. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Northeast relief was described by the Pediplanation Model. This action discards the theoretical basis of post-Cretaceous tectonic evolution of the landscape. Through this model the Massif Pereiro - MP, Borborema Province, was established as part of the Tablelands Area Residual Sertanejos. The present work aims to establish the post- Cretaceous morphotectonic evolution of the MP by geomorphological and geological mapping using Geographic Information System, Remote Sensing and dating of sediments by Single Aliquot Regenerative-dose (SAR). The MP is contained in the core semi-arid, annual precipitation of 600-800 mm / year. The MP is NE-SW, is limited by Shear Zone Jaguaribe (ZCJ) and Portalegre Shear Zone (ZCPa), the same attitude, and crossed by several other shear zones. These shear zones show evidence of brittle Cenozoic reactivation, mostly as normal faults and shallow crustal level. The Quaternary sedimentation around the MP focuses on fault escarpments in a general pattern cascade, where ages decrease from the summits of the steep foothills. The ages of 51 sediment samples indicate a correlation with global climate following pulses: Last Interestadial-UI, the Last Glacial Maximum - LGM and the transition Pleistocene / Holocene, while the latter focus on 18 of 51 samples dated. This study also finds evidence of a new quaternary basin, here called Merejo Basin. Through these results it is concluded that no evidence of post-Cretaceous tectonic evolution of morphological MP, as their retreat along the fault scarps, invariably following the trend of the shear zones. The erosion of cliffs in large time scale is controlled by weakness zones generated by faults on the other hand the erosion of cliffs in short time, with the formation of deposits and colluvial horizons pedogenizados, has climate control. It was also found that in the study area there is a preponderance of past and current tectonic erosion processes on the morphological evolution
Resumo:
A morpho-structural analysis was performed in the uplifted siliciclastic deposits of the Serra do Martins Formation along the Portalegre, Martins and Santana plateaux, in the southeastern and central regions of Rio Grande do Norte State. Due to the lack of biostratigraphic records, this formation has a disputable age.The adopted approach was based on the analysis of the drainage patterns and in the recognition of topographic surfaces and regional structures, subjected to neotectonic deformation and rejuvenation the present stress field. These events are recorded in the lineament arrays and as anomalous features of the landscape, such as the uplifted plateaux.The morpho-sculptural evolution of the studied blocks is expressed as erosive and accumulative processes. The former ones include erosional scarpments, cuestas and amphitheaters as the most characteristic features, while debris slopes represent acumulative examples. Such elements attest to the recent disequilibrium of the plateaux, and the absence of well developed alluvium terraces suggest an accelerated uplift process. The directions of the linear features observed in remote sensing products evidence the control of the basement structural trends, inherited from the pre-Cenozoic evolution. The NNE-SSW direction controls the main erosional features of the plateaux, while the N-S direction is a major drainage control, being also recognized in the Potiguar Basin. An E-W trend occurs as a less developed direction, reflecting either a system of mesozoic basic dykes or precambrian brittle structures. As regards to the drainage arrays, an arborescent, varying to a roughly N-S rectangular pattern, was identified in the Portalegre-Martins block. The Santana plateau displays rectilinear (northern border) and dendritic arborescent (southern border) patterns. In the sedimentary cover, the drainage pattern varies from rectangular to angular, reflecting inheritance from the crystaline basement. The most significative directions, N, NE and NW, mark the erosional fronts of the plateaux. Drainage anomalies, characterized by elbows or paralell confluencies, reinforce the arguments mentioned above. The data sets evidence the relationships between endogenous (lithology, structures) and exogenous features as the main controls of terrain dissecation, associated to vertical (epirogenesis) movements and horizontal tectonics. A final discussion addresses the relationships of the Serra do Martins Formation with the sedimentary record of Potiguar Basin, trying to establish chronostratigraphic links with the main evolutionary steps of this part of the Borborema Province, and possible mechanisms involved in the uplift of the plateaux and other stratigraphic units in the region
Resumo:
The Curitiba Basin, Parana, lies parallel to the west side of the Serra do Mar range and is part of a continental rift near the Atlantic coast of southeastern Brazil. It bears unconsolidated and poorly consolidated sediments divided in two formations: the lower Guabirotuba Formation and the overlying Tinguis Formation, both developed over Precambrian basement. Field observations, water well drill cores, and interpretations of satellite images lead to the inference that regional tectonic processes were responsible for the origin of the Basin in the continental rift context and for morphotecatonic evolution through block tilting, dissection, and erosion. The structural framework of the sediments and the basement is characterized by NE-SW-trending normal faults (extensional tectonic D-1 event) reactivated by NE-SW-trending strike-slip and reverse oblique faults (younger transtensional tectonic D-2' to transpressional tectonic D-2, event). This tectonic event, which started in the Paleogene and controlled the basin geometry, began as a halfgraben and was later reactivated as a pull-apart basin. D-2 is a neotectonic event that controls the current morphostructures. The Basin is connected to the structural rearrangement of the South American platform, which underwent a generalized extensional or trantensional process and, in late Oligocene, changed to a compressional to transpressional regime. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A área da Bacia do Marajó apresenta feições geológicas e geomorfológicas devidas principamente à distensão Mesozóica e à neotectônica pós-miocênica. O evento de distensão, com fases do Cretáceo Inferior e Superior, originou quatro sub-bacias que contituem a Bacia do Marajó, com uma espessa seqüência clástica continental mostrando influência marinha. Falhas normais NW e NNW e direcionais NE e ENE controlaram a geometria da bacia. A distensão, relacionada com a abertura do Atlântico Equatorial, propagou-se continente adentro ao longo de zonas de fraqueza crustal dos cinturões orogênicos pré-cambrianos Tumucumaque, Amapá e Araguaia. O evento neotectônico é um regime transcorrente que desenvolveu bacias transtensivas preenchidas por sedimentos marinhos rasos (Formação Pirabas) e seqüências transicionais (Grupo Barreiras) do Terciário Superior, seguidos por depósitos fluviais e seqüências transicionais do Quaternário, derivadas dos rios Amazoans e Tocantins e do estuário do Marajó. A paisagem atual tem morfologia tipicamente estuarina. A morfologia costeira apresenta escarpas em seqüências transicionais do Terciário Superior, enquanto no interior dominam elevações sustentadas por crosta laterítica do Pleistoceno Médio, aparadas por superfície erosiva a 70 m. No leste da Ilha do Marajó são reconhecidas várias gerações de paleocanais com seqüências estuarinas associadas, enquanto no lado oeste predomina uma planície flúvio-marinha.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)