975 resultados para Branched Macromolecules


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relation between the properties of polyampholytes in aqueous solution and their adsorption behaviors on silica and cellulose surfaces was investigated. Four polyampholytes carrying different charge densities but with the same nominal ratio of positive to negative segments and two structurally similar polyelectrolytes (a polyacid and a polybase) were investigated by using quartz crystal microgravimetry using silica-coated and cellulose-coated quartz resonators. Time-resolved mass and rigidity (or viscoelasticity) of the adsorbed layer was determined from the shifts in frequency (Delta f) and energy dissipation (Delta D) of the respective resonator. Therefore, elucidation of the dynamics and extent of adsorption, as well as the conformational changes of the adsorbed macromolecules, were possible. The charge properties of the solid Surface played a crucial role in the adsorption of the studied polyampholytes, which was explained by the capability of the surface to polarize the polyampholyte at the interface. Under the same experimental conditions, the polyampholytes had a higher nominal charge density phase-separated near the interface, producing a soft, dissipative, and loosely bound layer. In the case of cellulose substrates, where adsorption was limited, electrostatic and polarization effects were concluded to be less significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 252-256, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble (EPS-SOL), as well as insoluble extracellular polysaccharide (EPS-INSOL), extracted from biofilm of Streptococcus mutans, were analyzed by nuclear magnetic resonance spectroscopy, methylation analysis, and a controlled Smith degradation. EPS-SOL was a branched alpha-glucan containing a (1 -> 6)-and (1 -> 3)-linkages. EPS-INSOL was a branched alpha-glucan with similar linkages, but with a (1 -> 3)-linked main-chain partially substituted at O-6 with Glcp-(1 -> 6)-Glcp-side chains. Biofilm EPS had a distinct chemical structure compared with those synthesized by plankton cells or by purified enzymes from S. mutans, which could indicate different mechanisms for its degradation. (C) 2011 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this work were preparation and physical-chemical characterization of a microparticulate release system for delivery of enoxaparin sodium (ENX), a low-molecular-weight heparin, as a potential vehicle for optimization of deep venous thrombosis therapy. Microparticles (MPs) containing ENX were prepared from polylactide-co-glycolic acid [PLGA; (50: 50)] by a double emulsification/solvent evaporation method. The preparation parameters, such as proportion ENX/PLGA, surfactant concentration, type, time, and speed of stirring, were evaluated. The encapsulation efficiency and yield process were determined and optimized, and the in vitro release profile was analysed at 35 days. The MPs showed a spherical shape with smooth and regular surfaces. The size distribution showed a unimodal profile with an average size of 2.0 +/- 0.9 mu m. The low encapsulation efficiency (< 30%), characteristic of hydrophilic macromolecules was improved, reaching 50.2% with a procedure yield of 71.3%. The in vitro profile of ENX release from the MPs was evaluated and showed pseudo-zero-order kinetics. This indicated that diffusion was the main drug release mechanism. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:1783-1792, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solanum lycocarpum A. St. Hil. (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado. S. lycocarpum fruits are commonly used in traditional medicine in powder form or as folk preparations for the treatment of diabetes and obesity, as well as for controlling cholesterol levels. The aim of the present study was to chemically characterize the hydroalcoholic extract (SL) of S. lycocarpum by determination of total flavonoids and total poyphenols and quantification of steroidal alkaloids, as well as to evaluate its mutagenic and/or antimutagenic potential on V79 cells and Swiss mice using chromosomal aberrations and bone marrow micronucleus assays, respectively. Three concentrations of SL (16, 32, and 24 mu g/mL) were used for the evaluation of its mutagenic potential in V79 cells and four doses (0.25, 0.50, 1.0, and 2.0 g/kg body weight) were used for Swiss mice. In the antimutagenicity assays, the different concentrations of SL were combined with the chemotherapeutic agent doxorubicin (DXR). HPLC analysis of SL gave contents of 6.57% +/- 0.41 of solasonine and 4.60% +/- 0.40 of solamargine. Total flavonoids and polyphenols contents in SL were 0.04 and 3.60%, respectively. The results showed that not only SL exerted no mutagenic effect, but it also significantly reduced the frequency of chromosomal aberrations induced by DXR in both V79 cells and micronuclei in Swiss mice at the doses tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel strategy for fast NMR resonance assignment of N-15 HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively N-15-labeled samples. Comparison of sensitive undecoupled N-15 HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia Coll DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light-microscopic and electron-microscopic studies of the tropical marine sponge Haliclona sp. (Or der: Haplosclerida Family: Haliclonidae) from Heron Island, Great Barrier Reef, have revealed that this sponge is characterized by the presence of dinoflagellates and by nematocysts. The dinoflagellates are 7-10 mu m in size, intracellular, and contain a pyrenoid with a single stalk, whereas the single chloroplast is branched, curved, and lacks grana. Mitochondria are present, and the nucleus is oval and has distinct chromosomal structure. The dinoflagellates are morphologically similar to Symbiodinium microadriaticum, the common intracellular symbiont of corals, although more detailed biochemical and molecular studies are required to provide a precise taxonomic assignment. The major sponge cell types found in Haliclona sp, are spongocytes, choanocytes, and archaeocytes; groups of dinoflagellates are enclosed within large vacuoles in the archaeocytes. The occurrence of dinoflagellates in marine sponges has previously been thought to be restricted to a small group of sponges including the excavating hadromerid sponges; the dinoflagellates in these sponges are usually referred to as symbionts. The role of the dinoflagellates present in Haliclona sp. as a genuine symbiotic partner requires experimental investigation. The sponge grows on coral substrates, from which it may acquire the nematocysts, and shows features, such as mucus production, which are typical of some excavating sponges. The cytotoxic alkaloids, haliclonacyclamines A and B, associated with Haliclona sp. are shown by Percoll density gradient fractionation to be localized within the sponge cells rather than the dinoflagellates. The ability to synthesize bioactive compounds such as the haliclonacyclamines may help Haliclona sp. to preserve its remarkable ecological niche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the adult olfactory nerve pathway of rodents, each primary olfactory axon forms a terminal arbor in a single glomerulus in the olfactory bulb. During development, axons are believed to project directly to and terminate precisely within a glomerulus without any exuberant growth or mistargeting. To gain insight into mechanisms underlying this process, the trajectories of primary olfactory axons during glomerular formation were studied in the neonatal period. Histochemical staining of mouse olfactory bulb sections with the lectin Dolichos biflorus-agglutinin revealed that many olfactory axons overshoot the glomerular layer and course into the deeper laminae of the bulb in the early postnatal period. Single primary olfactory axons were anterogradely labelled either with the lipophilic carbocyanine dye, 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), or with horseradish peroxidase (HRP) by localized microinjections into the nerve fiber layer of the rat olfactory bulb. Five distinct trajectories of primary olfactory axons were observed in DLI-labelled preparations at postnatal day 1.5 (P1.5). Axons either coursed directly to and terminated specifically within a glomerulus, branched before terminating in a glomerulus, bypassed glomeruli and entered the underlying external plexiform layer, passed through the glomerular layer with side branches into glomeruli, or branched into more than one glomerulus. HRP-labelled axon arbors from eight postnatal ages were reconstructed by camera lucida and were used to determine arbor length, arbor area, and arbor branch number. Whereas primary olfactory axons display errors in laminar targeting in the mammalian olfactory bulb, axon arbors typically achieve their adult morphology without exuberant growth. Many olfactory axons appear not to recognize appropriate cues to terminate within the glomerular layer during the early postnatal period. However, primary olfactory axons exhibit precise targeting in the glomerular layer after P5.5, indicating temporal differences in either the presence of guidance cues or the ability of axons to respond to these cues. (C) 1999 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of the hydrogen-bonded polymer blends of poly(4-vinylphenol) and poly(2-ethoxyethyl methacrylate) are presented. Spectroscopic techniques such as C-13 solid-state NMR and FT-IR are used to probe specific interactions of the blends at various compositions. Spectral features from both techniques revealed that site-specific interactions are present, consistent with a significant degree of mixing of the blend components. Changes in chemical shift and line shape of the phenolic carbon and carbonyl resonances in the C-13 CPMAS spectra of the blends as a function of composition are interpreted as resulting from changes in the relative intensities of two closely overlapped signals. A quantitative measure of hydrogen-bonded carbonyl groups using C-13 NMR has been obtained which agreed well with the results from FT-IR analyses. It is also shown that C-13 NMR can be used to measure the fraction of hydroxyl groups associated with carbonyl groups, which was not possible previously using FT-IR due to extensive overlapping of bands in the hydroxyl stretching region. The results of measurements of H-1 T-1 and 1H T-1 rho indicate that PVPh and PEEMA are intimately mixed on a scale less than 2-3 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiolysis of nitrile rubbers with different acrylonitrile/butadiene composition and the homopolymers, poly(butadiene) (PBD) and poly(acrylonitrile) (PAN) has been investigated and compared with the photolysis of the same polymers. A significantly different mechanism of degradation was found for the two types of radiation. The results obtained by ESR, FTIR and measurements of soluble fractions of irradiated samples, indicated that the acrylonitrile units of the nitrile rubbers are more sensitive units to gamma-radiation, with the effects of irradiation increasing with the acrylonitrile content. The reactions observed were consumption of double bonds, crosslinking, and cyclization with the formation of conjugated double bonds. No chain-scission reactions were detected. In contrast to gamma-irradiation, the effects of photolysis were centred at the butadiene units, and increases in the acrylonitrile content resulted in a proportional decrease in the sensitivity of the copolymers. Crosslinking and chain scission were identified as the main effects of photolysis of NBR rubbers. (C) 1999 Society of Chemical Industry.