915 resultados para Box jellyfish
Resumo:
An analysis of how the World Bank has maintained a position supportive of multinational strategies for privatisation of water.
Resumo:
This paper presents novel collaboration methods implemented using a centralized client/server product development integration architecture, and a decentralized peer-to-peer network for smaller and larger companies using open source solutions. The product development integration architecture has been developed for the integration of disparate technologies and software systems for the benefit of collaborative work teams in design and manufacturing. This will facilitate the communication of early design and product development within a distributed and collaborative environment. The novelty of this work is the introduction of an‘out-of-box’ concept which provides a standard framework and deploys this utilizing a proprietary state-of-the-art product lifecycle management system (PLM). The term ‘out-of-box’ means to modify the product development and business processes to suit the technologies rather than vice versa. The key business benefits of adopting such an approach are a rapidly reconfigurable network and minimal requirements for software customization to avoid systems instability
Resumo:
Data obtained since 1958 from the continuous plankton recorder show an increasing occurrence of jellyfish in the central North Sea that is positively related to the North Atlantic Oscillation (NAO) and Atlantic inflow to the northern North Sea. Since 1970, jellyfish frequency has been also significantly negatively correlated with mean annual pH, independent of NAO trends. Jellyfish frequency increased in the mid-1980s, coincident with the reported regime shift in the North Sea and tracking trends in phytoplankton color. As models produced under all climate-change scenarios indicate a move toward a positive NAO, and pH of the oceans is predicted to decrease with rising CO2, we suggest that jellyfish frequency will increase over the next 100 yr.
Resumo:
Following the publication of our paper (Attrill et al. 2007), we became quickly aware of a couple of errors. We have subsequently been collaborating with Dr. Chris Lynam (Lynam et al. 2004, 2005) to bring together our two datasets, explore the common patterns within our data, and attempt to provide a consensus on how climate is affecting gelatinous plankton in the North Sea. During this reanalysis, two errors within the data were discovered, one involving a transcription error of a column of residuals during de-trended analysis, the other a major data entry error deep in the Continuous Plankton Recorder (CPR) database for sector B2. Here we present a revised version of table 1 from Attrill et al. (2007) to incorporate corrections to these transcription and data entry errors. These corrections alter some of the results in our original data table, mainly to increase and strengthen the number of significant relations we found (e.g., for sector B2 and whole sea area); all previous main results remain robustly significant. Following discussions with Dr. Lynam, two clarifications of statements made in Attrill et al. (2007) are also required. Page 482, Results, last line of first column: ‘‘There were no...robust, consistent relations between jellyfish frequency and any environmental variables for B and D… contrary to the findings of previous shorter time series (Lynam et al. 2005).’’ The Lynam et al. (2004, 2005) papers presented no data for the D sector and found no link in the B sector, contrary to our revised results. Page 482, Discussion, paragraph 1, last sentence: ‘‘… positive association … North of Scotland (Lynam et al. 2005) … does not appear to be maintained.’’ Our paper did not report on any data that covered Lynam et al.’s (2005) North of Scotland area so the statement is not directly supported, although their positive relation North of Scotland, when considered in conjunction with inflow, may agree with the C2 and B2 results of Attrill et al. (2007).
Resumo:
A number of explanations have been advanced to account for the increased frequency and intensity at which jellyfish (pelagic cnidarians and ctenophores) blooms are being observed, most of which have been locally directed. Here, we investigate seasonal and inter-annual patterns in abundance and distribution of jellyfish in the North Atlantic Ocean to determine if there have been any system-wide changes over the period 1946–2005, by analysing records of the presence of coelenterates from the Continuous Plankton Recorder (CPR) survey. Peaks in jellyfish abundance are strongly seasonal in both oceanic and shelf areas: oceanic populations have a mid-year peak that is more closely related to peaks in phyto- and zooplankton, whilst the later peak of shelf populations mirrors changes in SST and reflects processes of advection and aggregation. There have been large amplitude cycles in the abundance of oceanic and shelf jellyfish (although not synchronous) over the last 60 years, with a pronounced synchronous increase in abundance in both areas over the last 10 years. Inter-annual variations in jellyfish abundance in oceanic areas are related to zooplankton abundance and temperature changes, but not to the North Atlantic Oscillation or to a chlorophyll index. The long-term inter-annual abundance of jellyfish on the shelf could not be explained by any environmental variables investigated. As multi-decadal cycles and more recent increase in jellyfish were obvious in both oceanic and shelf areas, we conclude that these are likely to reflect an underlying climatic signal (and bottom-up control) rather than any change in fishing pressure (top-down control). Our results also highlight the role of the CPR data in investigating long-term changes in jellyfish, and suggest that the cnidarians sampled by the CPR are more likely to be holoplanktic hydrozoans and not the much larger meroplanktic scyphozoans as has been suggested previously.
Resumo:
A long-term time series of plankton records collected by the continuous plankton recorder (CPR) Survey in the northeast Atlantic indicates an increased occurrence of Cnidaria since 2002. In the years 2007 and 2008, outbreaks of the warm-temperate scyphomedusa, Pelagia noctiluca, appeared in CPR samples between 45° N to 58° N and 1° W to 26° W. Knowing the biology of this species and its occurrence in the adjacent Mediterranean Sea, we suggest that P. noctiluca may be exploiting recent hydroclimatic changes in the northeast Atlantic to increase its extent and intensity of outbreaks. In pelagic ecosystems, Cnidaria can affect fish recruitment negatively. Since P. noctiluca is a highly venomous species, outbreaks can also be detrimental to aquaculture and make bathing waters unusable, thus having profound ecological and socio-economic consequences.
Resumo:
Ocean acidification may negatively affect calcifying plankton, opening ecological space for non-calcifying species. Recently, a study of climate-forcing of jellyfish reported the first analysis suggesting that there were more jellyfish (generally considered a noncalcifying group) when conditions were more acidic (lower pH) from one area within the North Sea. We examine this suggestion for a number of areas in the North Sea and beyond in the Northeast Atlantic using coelenterate records from the Continuous Plankton Recorder and pH data from the International Council for the Exploration of the Sea for the period 1946-2003. We could find no significant relationships between jellyfish abundance and acidic conditions in any of the regions investigated. We conclude that the role of pH in structuring zooplankton communities in the North Sea and further afield at present is tenuous.
Resumo:
Due to the complexity and inherent instability in polymer extrusion there is a need for process models which can be run on-line to optimise settings and control disturbances. First-principle models demand computationally intensive solution, while ‘black box’ models lack generalisation ability and physical process insight. This work examines a novel ‘grey box’ modelling technique which incorporates both prior physical knowledge and empirical data in generating intuitive models of the process. The models can be related to the underlying physical mechanisms in the extruder and have been shown to capture unpredictable effects of the operating conditions on process instability. Furthermore, model parameters can be related to material properties available from laboratory analysis and as such, lend themselves to re-tuning for different materials without extensive remodelling work.