923 resultados para Bovine, Bone histomorphometry, Mechanical stability, Endochondral ossification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Short implants are increasingly used, but there is doubt about their performance being similar to that of regular implants. The aim of this study was to compare the mechanical stability of short implants vs. regular implants placed in the edentulous posterior mandible. MATERIAL AND METHODS Twenty-three patients received a total of 48 short implants (5 × 5.5 mm and 5 × 7 mm) and 42 regular implants (4 × 10 mm and 4 × 11.5 mm) in the posterior mandible. Patients who received short implants had <10 mm of bone height measured from the bone crest to the outer wall of the mandibular canal. Resonance frequency analysis (RFA) was performed at time intervals T0 (immediately after implant placement), T1 (after 15 days), T2 (after 30 days), T3 (after 60 days), and T4 (after 90 days). RESULTS The survival rate after 90 days was 87.5% for the short implants and 100% for regular implants (P < 0.05). There was no significant difference between the implants in time intervals T1, T2, T3, and T4. In T0, the RFA values of 5 × 5.5 implants were higher than values of 5 × 7 and 4 × 11.5 implants (P < 0.05). A total of six short implants that were placed in four patients were lost (three of 5 × 5.5 mm and three of 5 × 7 mm). Three lost implants started with high ISQ values, which progressively decreased. The other three lost implants started with a slightly lower ISQ value, which rose and then began to fall. CONCLUSIONS Survival rate of short implants after 90 days was lower than that of regular implants. However, short implants may be considered a reasonable alternative for rehabilitation of severely resorbed mandibles with reduced height, to avoid performing bone reconstruction before implant placement. Patients need to be aware of the reduced survival rate compared with regular implants before implant placement to avoid disappointments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling process on wafers to produce EWT or MWT solar cells is a critical fabrication step, which affects on their mechanical stability. The amount of damage introduced during drilling process depends on the density of holes, their size and the chemical process applied afterwards. To quantify the relation between size of the holes and reduction of mechanical strength, several sets of wafers have been prepared, with different hole diameter. The mechanical strength of these sets has been measured by the ring on ring bending test, and the stress state in the moment of failure has been deduced by FE simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a combination of numerical methods applied to thermohydrodynamic lubrication problems with cavitation is presented. It should be emphasized the difficulty of the nonlinear mathematical coupled model involving a free boundary problem, but also the simplicity of the algorithms employed to solve it. So, finite element discretizations for the hydrodynamic and thermal equations combined with upwind techniques for the convection terms and duality methods for nonlinear features are proposed. Additionally, a model describing the movement of the shaft is provided. Considering the shaft as a rigid body this model will consist of an ODE system relating acceleration of the center of gravity and external and pressure loads. The numerical experiments of mechanical stability try to clarify the position of the neutral stability curve. Finally, a rotating machine for ship propulsion involving both axial and radial bearings operating with nonconventional lubricants (seawater to avoid environmental pollution) is analyzed by using laminar and turbulent inertial flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ankle sprains are the most common injuries in sports, usually causing damage to the lateral ligaments. Recurrence has as usual result permanent instability, and thus loss of proprioception. This fact, together with residual symptoms, is what is known as chronic ankle instability, CAI, or FAI, if it is functional. This problem tries to be solved by improving musculoskeletal stability and proprioception by the application of bandages and performing exercises. The aim of this study has been to review articles (meta-analisis, systematic reviews and revisions) published in 2009-2015 in PubMed, Medline, ENFISPO and BUCea, using keywords such as “sprain instability”, “sprain proprioception”, “chronic ankle instability”. Evidence affirms that there does exist decreased proprioception in patients who suffer from CAI. Rehabilitation exercise regimen is indicated as a treatment because it generates a subjective improvement reported by the patient, and the application of bandages works like a sprain prevention method limiting the range of motion, reducing joint instability and increasing confidence during exercise. As podiatrists we should recommend proprioception exercises to all athletes in a preventive way, and those with CAI or FAI, as a rehabilitation programme, together with the application of bandages. However, further studies should be generated focusing on ways of improving proprioception, and on the exercise patterns that provide the maximum benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal bone necrosis induced during a drilling process is a frequent and potential phenomenon, which contributes to post-operative problems. The frictional heat generated from the contact between the drill bit and the hole wall is unavoidable. However, understanding advanced techniques for acquiring reliable thermal data on bone drilling is important to ensure the quality of the drilled hole. The purpose of this study is to present two different experimental methods to analyse the drilling conditions that generate the lower temperatures, avoiding the occurrence of thermal bone necrosis. Ex-vivo bovine bones were used to simulate the drilling process considering the effect of drill bit diameter, drill speed and feed-rate. Different experiments were performed to assess the repeatability of the tests. The results identified the drill bit diameter as the most critical parameter for inducing higher temperatures in bone drilling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he thermal bone necrosis induced during a drilling process is a frequent and potential phenomenon, which contributes to post-operative problems. The frictional heat generated from the contact between the drill bit and the hole wall is unavoidable. However, understanding advanced techniques for acquiring reliable thermal data on bone drilling is important to ensure the quality of the drilled hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a dynamic, highly vascularized tissue with a unique capacity to heal and regenerate without scarring. However, drilling remains a concern in several clinical procedures due to thermal damage of the bone and surrounding tissue. The success of this surgeries is dependent of many factors and also in temperature generation during the drilling bone. When an excessive heat is produced during the drilling, thermal necrosis can occur and the bone suffers injuries. Studies have shown that the increased temperature is directly related with the drilling parameters, particularly, the drill speed, feed-rate, applied force, the depth of cut, the geometry of the drill bit, the use or not of a cooling system and also the type of bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate whether altered occlusion affects both the condylar cartilage thickness and the cytokine levels of the TMJs of rats. Thirty adult-male rats (n=30) were randomly assigned to three experimental conditions: a control group that underwent sham operations with unaltered occlusion; an FPDM group that underwent functional posterior displacement of the mandible that was induced by an incisor guiding appliance; and an iOVD group in which the increased occlusal vertical dimension was induced in the molars. The rats were subjected to the FPDM or iOVD model for 14 days and then killed. Both the right and left TMJs were removed and randomly assigned to examination with staining or immunoassay techniques. Toluidine blue staining was used to measure the thicknesses of the four layers of the articular cartilage (i.e., the fibrous, proliferating, mature, and hypertrophic layers). ELISA assays were used to assess the concentrations of the pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and tumour necrosis factor (TNF-α). The measurements of the articular cartilage layers and cytokine concentrations were analyzed with ANOVA and Tukey's tests and Kruskal-Wallis and Dunn tests, respectively (α=5%). The thickness of articular cartilage in the FPDM group (0.3±0.03mm) was significantly greater than those of the control (0.2±0.01mm) and iOVD (0.25±0.03mm) groups. No significant difference was observed between the control and iOVD groups. The four articular cartilage layers were thicker in the FPDM group than in the control and iOVD groups, and the latter two groups did not differ one from each other. Both the FPDM and iOVD groups exhibited higher cytokine levels than did the control (p<0.05) group. Compared to the FPDM group, the iOVD group exhibited significantly higher levels of IL-1β and TNF-α. Both models induced inflammation in the TMJ and caused significant structural changes in the TMJ and surrounding tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The esthetics and functional integrity of the periodontal tissue may be compromised by dental loss. Immediate implants became a viable option to maintain the periodontal architecture because of their anatomic compatibility with the dental socket and the possibility of eliminating local contamination. This article describes the procedure of immediate implant placement in the anterior maxilla replacing teeth with chronic periapical lesions, which were condemned due to endodontic lesions persisting after failed endodontic treatment and endodontic surgery, and discusses the relationship between the procedure and periapical lesions. Surgical removal of hopeless teeth 11, 12 and 21 was performed conservatively in such a way to preserve the anatomy and gingival esthetics. A second surgical access was gained at the apical level, allowing the debridement of the surgical chamber for elimination of the periapical lesion, visual orientation for setting of the implants and filling of the surgical chamber with xenogenous bovine bone graft. After this procedure, the bone chamber was covered with an absorbent membrane and the healing screws were positioned on the implants. Later, a provisional partial removable denture was installed and the implants were inserted after 6 months. After 3 years of rehabilitation, the implants present satisfactory functional and esthetic conditions, suggesting that immediate implant placement combined with guided bone regeneration may be indicated for replacing teeth lost due to chronic periapical lesions with endodontic failure history in the anterior maxilla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.