1000 resultados para Bottom water temperature mooring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compared seasonal changes in Eurasian watermilfoil (Myriophyllum spicatum L.) characteristics and water temperature for a shallow poind in Davis, CA, and the Truckee River, near Tahoe City, CA. Tissue C and N were 15% lower in plants from the Truckee River than in plants from the Davis pond. Seasonal fluctuations in tissue N were also different. Mean phenolic acid content of Truckee River palnts (162yM g-1) was less than those from the shallow pond (195 yM g-1). Phenolic acid content was positively related to tissue C for Truckee River and Davis pond plants and, tissue C:N ratio for Truckee River plants. Mean monthly water temperature (1990 to 1998) for the Truckee River site was less than 20 C. Water temperatures were warmer in August and September at this site. However, Eurasian watermilfoil collected during these months was characterized by lower levels of tissue N. During a 29-month period beginning January 1994, mean monthly water temperature for the Davis pond exceeded 20 C, only during July to September 1995. Tissue N was generally greater during summer for watermilfoil growing in the pond. These results imply that Eurasian watermilfoil biological control agents may have different developmental rates in these habitats, and thus different impacts on watermilfoil populations.