812 resultados para Boolean-like laws. Fuzzy implications. Fuzzy rule based systens. Fuzzy set theories
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
Classical relational databases lack proper ways to manage certain real-world situations including imprecise or uncertain data. Fuzzy databases overcome this limitation by allowing each entry in the table to be a fuzzy set where each element of the corresponding domain is assigned a membership degree from the real interval [0…1]. But this fuzzy mechanism becomes inappropriate in modelling scenarios where data might be incomparable. Therefore, we become interested in further generalization of fuzzy database into L-fuzzy database. In such a database, the characteristic function for a fuzzy set maps to an arbitrary complete Brouwerian lattice L. From the query language perspectives, the language of fuzzy database, FSQL extends the regular Structured Query Language (SQL) by adding fuzzy specific constructions. In addition to that, L-fuzzy query language LFSQL introduces appropriate linguistic operations to define and manipulate inexact data in an L-fuzzy database. This research mainly focuses on defining the semantics of LFSQL. However, it requires an abstract algebraic theory which can be used to prove all the properties of, and operations on, L-fuzzy relations. In our study, we show that the theory of arrow categories forms a suitable framework for that. Therefore, we define the semantics of LFSQL in the abstract notion of an arrow category. In addition, we implement the operations of L-fuzzy relations in Haskell and develop a parser that translates algebraic expressions into our implementation.
Resumo:
In this thesis an attempt to develop the properties of basic concepts in fuzzy graphs such as fuzzy bridges, fuzzy cutnodes, fuzzy trees and blocks in fuzzy graphs have been made. The notion of complement of a fuzzy graph is modified and some of its properties are studied. Since the notion of complement has just been initiated, several properties of G and G available for crisp graphs can be studied for fuzzy graphs also. Mainly focused on fuzzy trees defined by Rosenfeld in [10] , several other types of fuzzy trees are defined depending on the acyclicity level of a fuzzy graph. It is observed that there are selfcentered fuzzy trees. Some operations on fuzzy graphs and prove that complement of the union two fuzzy graphs is the join of their complements and complement of the join of two fuzzy graphs is union of their complements. The study of fuzzy graphs made in this thesis is far from being complete. The wide ranging applications of graph theory and the interdisciplinary nature of fuzzy set theory, if properly blended together could pave a way for a substantial growth of fuzzy graph theory.
Resumo:
The fuzzy set theory has a wider scope of applicability than classical set theory in solving various problems. Fuzzy set theory in the last three decades as a formal theory which got formalized by generalizing the original ideas and concepts in classical mathematical areas and as a very powerful modeling language, that can cope with a large fraction of uncertainties of real life situations. In Intuitionistic Fuzzy sets a new component degree of non membership in addition to the degree of membership in the case of fuzzy sets with the requirement that their sum be less than or equal to one. The main objective of this thesis is to study frames in Fuzzy and Intuitionistic Fuzzy contexts. The thesis proved some results such as ifµ is a fuzzy subset of a frame F, then µ is a fuzzy frame of F iff each non-empty level subset µt of µ is a subframe of F, the category Fuzzfrm of fuzzy frames has products and the category Fuzzfrm of fuzzy frames is complete. It define a fuzzy-quotient frame of F to be a fuzzy partition of F, that is, a subset of IF and having a frame structure with respect to new operations and study the notion of intuitionistic fuzzy frames and obtain some results and introduce the concept of Intuitionistic fuzzy Quotient frames. Finally it establish the categorical link between frames and intuitionistic fuzzy topologies.
Resumo:
In this study we combine the notions of fuzzy order and fuzzy topology of Chang and define fuzzy ordered fuzzy topological space. Its various properties are analysed. Product, quotient, union and intersection of fuzzy orders are introduced. Besides, fuzzy order preserving maps and various fuzzy completeness are investigated. Finally an attempt is made to study the notion of generalized fuzzy ordered fuzzy topological space by considering fuzzy order defined on a fuzzy subset.
Resumo:
Mit aktiven Magnetlagern ist es möglich, rotierende Körper durch magnetische Felder berührungsfrei zu lagern. Systembedingt sind bei aktiv magnetgelagerten Maschinen wesentliche Signale ohne zusätzlichen Aufwand an Messtechnik für Diagnoseaufgaben verfügbar. In der Arbeit wird ein Konzept entwickelt, das durch Verwendung der systeminhärenten Signale eine Diagnose magnetgelagerter rotierender Maschinen ermöglicht und somit neben einer kontinuierlichen Anlagenüberwachung eine schnelle Bewertung des Anlagenzustandes gestattet. Fehler können rechtzeitig und ursächlich in Art und Größe erkannt und entsprechende Gegenmaßnahmen eingeleitet werden. Anhand der erfassten Signale geschieht die Gewinnung von Merkmalen mit signal- und modellgestützten Verfahren. Für den Magnetlagerregelkreis erfolgen Untersuchungen zum Einsatz modellgestützter Parameteridentifikationsverfahren, deren Verwendbarkeit wird bei der Diagnose am Regler und Leistungsverstärker nachgewiesen. Unter Nutzung von Simulationsmodellen sowie durch Experimente an Versuchsständen werden die Merkmalsverläufe im normalen Referenzzustand und bei auftretenden Fehlern aufgenommen und die Ergebnisse in einer Wissensbasis abgelegt. Diese dient als Grundlage zur Festlegung von Grenzwerten und Regeln für die Überwachung des Systems und zur Erstellung wissensbasierter Diagnosemodelle. Bei der Überwachung werden die Merkmalsausprägungen auf das Überschreiten von Grenzwerten überprüft, Informationen über erkannte Fehler und Betriebszustände gebildet sowie gegebenenfalls Alarmmeldungen ausgegeben. Sich langsam anbahnende Fehler können durch die Berechnung der Merkmalstrends mit Hilfe der Regressionsanalyse erkannt werden. Über die bisher bei aktiven Magnetlagern übliche Überwachung von Grenzwerten hinaus erfolgt bei der Fehlerdiagnose eine Verknüpfung der extrahierten Merkmale zur Identifizierung und Lokalisierung auftretender Fehler. Die Diagnose geschieht mittels regelbasierter Fuzzy-Logik, dies gestattet die Einbeziehung von linguistischen Aussagen in Form von Expertenwissen sowie die Berücksichtigung von Unbestimmtheiten und ermöglicht damit eine Diagnose komplexer Systeme. Für Aktor-, Sensor- und Reglerfehler im Magnetlagerregelkreis sowie Fehler durch externe Kräfte und Unwuchten werden Diagnosemodelle erstellt und verifiziert. Es erfolgt der Nachweis, dass das entwickelte Diagnosekonzept mit beherrschbarem Rechenaufwand korrekte Diagnoseaussagen liefert. Durch Kaskadierung von Fuzzy-Logik-Modulen wird die Transparenz des Regelwerks gewahrt und die Abarbeitung der Regeln optimiert. Endresultat ist ein neuartiges hybrides Diagnosekonzept, welches signal- und modellgestützte Verfahren der Merkmalsgewinnung mit wissensbasierten Methoden der Fehlerdiagnose kombiniert. Das entwickelte Diagnosekonzept ist für die Anpassung an unterschiedliche Anforderungen und Anwendungen bei rotierenden Maschinen konzipiert.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.
Resumo:
In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The idea of considering imprecision in probabilities is old, beginning with the Booles George work, who in 1854 wanted to reconcile the classical logic, which allows the modeling of complete ignorance, with probabilities. In 1921, John Maynard Keynes in his book made explicit use of intervals to represent the imprecision in probabilities. But only from the work ofWalley in 1991 that were established principles that should be respected by a probability theory that deals with inaccuracies. With the emergence of the theory of fuzzy sets by Lotfi Zadeh in 1965, there is another way of dealing with uncertainty and imprecision of concepts. Quickly, they began to propose several ways to consider the ideas of Zadeh in probabilities, to deal with inaccuracies, either in the events associated with the probabilities or in the values of probabilities. In particular, James Buckley, from 2003 begins to develop a probability theory in which the fuzzy values of the probabilities are fuzzy numbers. This fuzzy probability, follows analogous principles to Walley imprecise probabilities. On the other hand, the uses of real numbers between 0 and 1 as truth degrees, as originally proposed by Zadeh, has the drawback to use very precise values for dealing with uncertainties (as one can distinguish a fairly element satisfies a property with a 0.423 level of something that meets with grade 0.424?). This motivated the development of several extensions of fuzzy set theory which includes some kind of inaccuracy. This work consider the Krassimir Atanassov extension proposed in 1983, which add an extra degree of uncertainty to model the moment of hesitation to assign the membership degree, and therefore a value indicate the degree to which the object belongs to the set while the other, the degree to which it not belongs to the set. In the Zadeh fuzzy set theory, this non membership degree is, by default, the complement of the membership degree. Thus, in this approach the non-membership degree is somehow independent of the membership degree, and this difference between the non-membership degree and the complement of the membership degree reveals the hesitation at the moment to assign a membership degree. This new extension today is called of Atanassov s intuitionistic fuzzy sets theory. It is worth noting that the term intuitionistic here has no relation to the term intuitionistic as known in the context of intuitionistic logic. In this work, will be developed two proposals for interval probability: the restricted interval probability and the unrestricted interval probability, are also introduced two notions of fuzzy probability: the constrained fuzzy probability and the unconstrained fuzzy probability and will eventually be introduced two notions of intuitionistic fuzzy probability: the restricted intuitionistic fuzzy probability and the unrestricted intuitionistic fuzzy probability
Resumo:
In the literature there are several proposals of fuzzi cation of lattices and ideals concepts. Chon in (Korean J. Math 17 (2009), No. 4, 361-374), using the notion of fuzzy order relation de ned by Zadeh, introduced a new notion of fuzzy lattice and studied the level sets of fuzzy lattices, but did not de ne a notion of fuzzy ideals for this type of fuzzy lattice. In this thesis, using the fuzzy lattices de ned by Chon, we de ne fuzzy homomorphism between fuzzy lattices, the operations of product, collapsed sum, lifting, opposite, interval and intuitionistic on bounded fuzzy lattices. They are conceived as extensions of their analogous operations on the classical theory by using this de nition of fuzzy lattices and introduce new results from these operators. In addition, we de ne ideals and lters of fuzzy lattices and concepts in the same way as in their characterization in terms of level and support sets. One of the results found here is the connection among ideals, supports and level sets. The reader will also nd the de nition of some kinds of ideals and lters as well as some results with respect to the intersection among their families. Moreover, we introduce a new notion of fuzzy ideals and fuzzy lters for fuzzy lattices de ned by Chon. We de ne types of fuzzy ideals and fuzzy lters that generalize usual types of ideals and lters of lattices, such as principal ideals, proper ideals, prime ideals and maximal ideals. The main idea is verifying that analogous properties in the classical theory on lattices are maintained in this new theory of fuzzy ideals. We also de ne, a fuzzy homomorphism h from fuzzy lattices L and M and prove some results involving fuzzy homomorphism and fuzzy ideals as if h is a fuzzy monomorphism and the fuzzy image of a fuzzy set ~h(I) is a fuzzy ideal, then I is a fuzzy ideal. Similarly, we prove for proper, prime and maximal fuzzy ideals. Finally, we prove that h is a fuzzy homomorphism from fuzzy lattices L into M if the inverse image of all principal fuzzy ideals of M is a fuzzy ideal of L. Lastly, we introduce the notion of -ideals and - lters of fuzzy lattices and characterize it by using its support and its level set. Moreover, we prove some similar properties in the classical theory of - ideals and - lters, such as, the class of -ideals and - lters are closed under intersection. We also de ne fuzzy -ideals of fuzzy lattices, some properties analogous to the classical theory are also proved and characterize a fuzzy -ideal on operation of product between bounded fuzzy lattices L and M and prove some results.
Resumo:
This paper presents the construction of a fuzzy environmental quality index for decision support in municipal environmental management. Five groups of indicators were selected in order to obtain an equation that best represented reality in terms of environmental quality. The calculation was carried out using fuzzy mathematical concepts, with the aid of the package Fuzzy Logical Toolbox 2.1 for Matlab ® 6.1, which provides functions and some applications of the theory of fuzzy sets. The work seeks to create a method of inference concerning the nature of urban areas that are unsustainable with respect to the environment, an issue that is often relegated to the background during public policy discussions. The development of this index, together with its implementation and dissemination, could improve public awareness of environmental issues, and promote mobilization towards the use of best practices in local development. © 2010 IEEE.