978 resultados para Bony orbit


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor I (IGF-I) plays a key role in the complex system that regulates bony fish growth, differentiation, and reproduction. The major source of circulating IGF-I is liver, but IGF-I-producing cells also occur in other organs, including the gonads. Because no data are available on the potential production sites of IGF-I in gonad development, developmental stages of monosex breedings of male and female tilapia from 0 day postfertilization (DPF) to 90 DPF were investigated for the production sites of IGF-I at the peptide (immunohistochemistry) and mRNA (in situ hybridization) level. IGF-I mRNA first appeared in somatic cells of the male and female gonad anlage at 7 DPF followed by IGF-I peptide around 9-10 DPF. Gonad anlagen were detected from 7 DPF. Starting at 7 DPF, IGF-I peptide but no IGF-I mRNA was observed in male and female primordial germ cells (PGCs) provided that IGF-I mRNA was not under the detection level, this observation may suggest that IGF-I originates from the somatic cells and is transferred to the PGCs or is of maternal origin. While in female germ cells IGF-I mRNA and peptide appeared at 29 DPF, in male germ cells both were detected as late as at 51-53 DPF. It is assumed that the production of IGF-I in the germ cells is linked to the onset of meiosis that in tilapia ovary starts at around 28 DPF and in testes at around 52-53 DPF. In adult testis, IGF-I mRNA and peptide occurred in the majority of spermatogonia and spermatocytes as well as in Leydig cells, the latter indicating a role of IGF-I in the synthesis of male sex steroids. In adult ovary, IGF-I mRNA and IGF-I peptide were always present in small and previtellogenic oocytes but only IGF-I peptide infrequently occurred in oocytes at the later stages. IGF-I expression appeared in numerous granulosa and some theca cells of follicles at the lipid stage and persisted in follicles with mature oocytes. The results suggest a crucial role of local IGF-I in the formation, differentiation and function of tilapia gonads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.