983 resultados para Boltzmann transport equation
Resumo:
This thesis aims to develop new numerical and computational tools to study electrochemical transport and diffuse charge dynamics at small scales. Previous efforts at modeling electrokinetic phenomena at scales where the noncontinuum effects become significant have included continuum models based on the Poisson-Nernst-Planck equations and atomic simulations using molecular dynamics algorithms. Neither of them is easy to use or conducive to electrokinetic transport modeling in strong confinement or over long time scales. This work introduces a new approach based on a Langevin equation for diffuse charge dynamics in nanofluidic devices, which incorporates features from both continuum and atomistic methods. The model is then extended to include steric effects resulting from finite ion size, and applied to the phenomenon of double layer charging in a symmetric binary electrolyte between parallel-plate blocking electrodes, between which a voltage is applied. Finally, the results of this approach are compared to those of the continuum model based on the Poisson-Nernst-Planck equations.
Resumo:
Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.
Resumo:
In this work two different finite volume computational strategies for solving a representative two-dimensional diffusion equation in an orthotropic medium are considered. When the diffusivity tensor is treated as linear, this problem admits an analytic solution used for analysing the accuracy of the proposed numerical methods. In the first method, the gradient approximation techniques discussed by Jayantha and Turner [Numerical Heat Transfer, Part B: Fundamentals, 40, pp.367–390, 2001] are applied directly to the
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
The field of fractional differential equations provides a means for modelling transport processes within complex media which are governed by anomalous transport. Indeed, the application to anomalous transport has been a significant driving force behind the rapid growth and expansion of the literature in the field of fractional calculus. In this paper, we present a finite volume method to solve the time-space two-sided fractional advection dispersion equation on a one-dimensional domain. Such an equation allows modelling different flow regime impacts from either side. The finite volume formulation provides a natural way to handle fractional advection-dispersion equations written in conservative form. The novel spatial discretisation employs fractionally-shifted Gr¨unwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes, while the L1-algorithm is used to discretise the Caputo time fractional derivative. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
Fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBF) to discretize the space variable. By contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example is presented to describe the fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating of fractional differential equations, and it has good potential in development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.
Resumo:
Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion; that is, not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space fractional advection-dispersion equation based on a fractional Fick's law. The equation involves the Riemann-Liouville fractional derivative which arises from assuming that particles may make large jumps. Finite difference methods for solving this equation have been proposed by Meerschaert and Tadjeran. In the variable coefficient case, the product rule is first applied, and then the Riemann-Liouville fractional derivatives are discretised using standard and shifted Grunwald formulas, depending on the fractional order. In this work, we consider a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Grunwald formulas are used to discretise the fractional derivatives at control volume faces. We compare the two methods for several case studies from the literature, highlighting the convenience of the finite volume approach.
Resumo:
The work presented in this thesis investigates the mathematical modelling of charge transport in electrolyte solutions, within the nanoporous structures of electrochemical devices. We compare two approaches found in the literature, by developing onedimensional transport models based on the Nernst-Planck and Maxwell-Stefan equations. The development of the Nernst-Planck equations relies on the assumption that the solution is infinitely dilute. However, this is typically not the case for the electrolyte solutions found within electrochemical devices. Furthermore, ionic concentrations much higher than those of the bulk concentrations can be obtained near the electrode/electrolyte interfaces due to the development of an electric double layer. Hence, multicomponent interactions which are neglected by the Nernst-Planck equations may become important. The Maxwell-Stefan equations account for these multicomponent interactions, and thus they should provide a more accurate representation of transport in electrolyte solutions. To allow for the effects of the electric double layer in both the Nernst-Planck and Maxwell-Stefan equations, we do not assume local electroneutrality in the solution. Instead, we model the electrostatic potential as a continuously varying function, by way of Poisson’s equation. Importantly, we show that for a ternary electrolyte solution at high interfacial concentrations, the Maxwell-Stefan equations predict behaviour that is not recovered from the Nernst-Planck equations. The main difficulty in the application of the Maxwell-Stefan equations to charge transport in electrolyte solutions is knowledge of the transport parameters. In this work, we apply molecular dynamics simulations to obtain the required diffusivities, and thus we are able to incorporate microscopic behaviour into a continuum scale model. This is important due to the small size scales we are concerned with, as we are still able to retain the computational efficiency of continuum modelling. This approach provides an avenue by which the microscopic behaviour may ultimately be incorporated into a full device-scale model. The one-dimensional Maxwell-Stefan model is extended to two dimensions, representing an important first step for developing a fully-coupled interfacial charge transport model for electrochemical devices. It allows us to begin investigation into ambipolar diffusion effects, where the motion of the ions in the electrolyte is affected by the transport of electrons in the electrode. As we do not consider modelling in the solid phase in this work, this is simulated by applying a time-varying potential to one interface of our two-dimensional computational domain, thus allowing a flow field to develop in the electrolyte. Our model facilitates the observation of the transport of ions near the electrode/electrolyte interface. For the simulations considered in this work, we show that while there is some motion in the direction parallel to the interface, the interfacial coupling is not sufficient for the ions in solution to be "dragged" along the interface for long distances.
A methodology to develop an urban transport disadvantage framework : the case of Brisbane, Australia
Resumo:
Most individuals travel in order to participate in a network of activities which are important for attaining a good standard of living. Because such activities are commonly widely dispersed and not located locally, regular access to a vehicle is important to avoid exclusion. However, planning transport system provisions that can engage members of society in an acceptable degree of activity participation remains a great challenge. The main challenges in most cities of the world are due to significant population growth and rapid urbanisation which produces increased demand for transport. Keeping pace with these challenges in most urban areas is difficult due to the widening gap between supply and demand for transport systems which places the urban population at a transport disadvantage. The key element in mitigating the issue of urban transport disadvantage is to accurately identify the urban transport disadvantaged. Although wide-ranging variables and multi-dimensional methods have been used to identify this group, variables are commonly selected using ad-hoc techniques and unsound methods. This poses questions of whether the current variables used are accurately linked with urban transport disadvantage, and the effectiveness of the current policies. To fill these gaps, the research conducted for this thesis develops an operational urban transport disadvantage framework (UTDAF) based on key statistical urban transport disadvantage variables to accurately identify the urban transport disadvantaged. The thesis develops a methodology based on qualitative and quantitative statistical approaches to develop an urban transport disadvantage framework designed to accurately identify urban transport disadvantage. The reliability and the applicability of the methodology developed is the prime concern rather than the accuracy of the estimations. Relevant concepts that impact on urban transport disadvantage identification and measurement and a wide range of urban transport disadvantage variables were identified through a review of the existing literature. Based on the reviews, a conceptual urban transport disadvantage framework was developed based on the causal theory. Variables identified during the literature review were selected and consolidated based on the recommendations of international and local experts during the Delphi study. Following the literature review, the conceptual urban transport disadvantage framework was statistically assessed to identify key variables. Using the statistical outputs, the key variables were weighted and aggregated to form the UTDAF. Before the variable's weights were finalised, they were adjusted based on results of correlation analysis between elements forming the framework to improve the framework's accuracy. The UTDAF was then applied to three contextual conditions to determine the framework's effectiveness in identifying urban transport disadvantage. The development of the framework is likely to be a robust application measure for policy makers to justify infrastructure investments and to generate awareness about the issue of urban transport disadvantage.
Resumo:
A fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBFs) to discretize the space variable. In contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example which is presented to describe a fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating fractional differential equations, and it has good potential in the development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.
Resumo:
Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.
Resumo:
Exact solutions of partial differential equation models describing the transport and decay of single and coupled multispecies problems can provide insight into the fate and transport of solutes in saturated aquifers. Most previous analytical solutions are based on integral transform techniques, meaning that the initial condition is restricted in the sense that the choice of initial condition has an important impact on whether or not the inverse transform can be calculated exactly. In this work we describe and implement a technique that produces exact solutions for single and multispecies reactive transport problems with more general, smooth initial conditions. We achieve this by using a different method to invert a Laplace transform which produces a power series solution. To demonstrate the utility of this technique, we apply it to two example problems with initial conditions that cannot be solved exactly using traditional transform techniques.
Resumo:
Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.
Resumo:
Computational fluid dynamics, analytical solutions, and mathematical modelling approaches are used to gain insights into the distribution of fumigant gas within farm-scale, grain storage silos. Both fan-forced and tablet fumigation are considered in this work, which develops new models for use by researchers, primary producers and silo manufacturers to assist in the eradication grain storage pests.