795 resultados para Bolivina spathulata
Resumo:
Foraminifera were examined in recent (<100 years) fine-grained glaciomarine muds from surface sediments and cores from Nordensheld Bay, Novaja Zemlja, and Hornsund and Bellsund, Spitsbergen. This study presents the first data on modern foraminifera distribution for fjord environments in Novaja Zemlja, Russia. The data are interpreted with reference to the distribution of foraminiferal near Svalbard and the Barents Sea. In Nordensheld Bay, live and dead Nonionellina labradorica and Islandiella norcrossi are most abundant in the outer fjord. Cassidulina reniforme and Allogromiina spp. dominate in the middle and inner fjord. The dominant species are dissimilar to species occurring in other areas of the Barents Sea region, with the exception of Svalbard fjords. The number of live foraminifera (24 to 122 tests/10 cm1) in outer and middle Nordensheld Bay corresponds with values known from the open Barents Sea. However, the biomass (0.03 mg/10 cm**3) is two orders of magnitude less due to smaller foraminiferal test size, which in glaciomarine sediments reflects the absence of larger species, paucity of large specimens, and high occurrence of juvenile foraminifera. The smaller size indicates an opportunistic response to environmental stress due to glacier proximity. The presence of Quinqueloculina stalkeri is diagnostic of glaciomarine environments in fjords of Novaja Zemlja and Svalbard.
Resumo:
Sediments from the western and southern part of the Arabian Sea were collected periodically in the spring intermonsoon between March and May 1997 and additionally at the end of the Northeast Monsoon in February 1998. Assemblages of Rose Bengal stained, living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity were analysed after the Northeast Monsoon and short-time changes were recorded. In the western Arabian Sea, foraminiferal numbers increased steadily between March and the beginning of May, especially in the smaller size classes (30-63 µm, 63-125 µm). At the same time, the deepening of the foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities were observed. We interpret these observations as the time-dependent response of benthic foraminifera to enhanced organic carbon fluxes during and after the Northeast Monsoon. In the southern Arabian Sea, constant low foraminiferal abundances during time, no distinctive change in the vertical distribution, reduced diversity, and more stable foraminiferal communities were noticed, which indicates no or little influence of the Northeast Monsoon to benthic foraminifera in this region.
Resumo:
Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.
Resumo:
A detailed age model for core 17957-2 of the southern South China Sea was developed based on delta18O, coarse fraction, magnetostratigraphy, and biostratigraphy for the last 1500 kyr. The delta18O record has clear ~100-kyr cycles after the Mid-Pleistocene Revolution (MPR) at the entrance of marine isotopic stage (MIS) 22. Planktonic foraminifera responded to the MPR immediately, showing the increased sea surface temperature (SST) and dissolution after the MPR. Benthic foraminifera did not respond to it until the Brunhes/Matuyama boundary. Since the MPR, the depth of thermocline gradually became shallower until MISs 6-5. This major change within MISs 6-5 was also reflected in the decreased SSTs and increased productivity and Deep Water Mass. Thus two major Pleistocene paleoceanographic changes were found: One was around the MPR; the other occurred within MISs 6-5, which speculatively might be ascribed to the reorganization of surface and deep circulation, possibly induced by tectonic forces.
Resumo:
The detailed structure and timing of the penultimate deglaciation are insufficiently defined yet critical for understanding mechanisms responsible for abrupt climate change. Here we present oxygen isotope records (from planktonic and benthic foraminifera) at unprecedented resolution encompassing late marine oxygen isotope stage (MIS) 6 and Termination II (ca. 150-120 ka) from the Santa Barbara Basin, supported by additional southern California margin records, a region highly sensitive to millennial-scale climate oscillations during the last deglaciation. These records reveal millennial- and centennial-scale climate variability throughout the interval, including an interstadial immediately preceding the deglaciation, a brief warm event near the beginning of Termination II, and a Bølling-Allerød-Younger Dryas-like climate oscillation midway through the deglaciation. Recognition of these events in an oxygen isotope record from a 230Th-dated stalagmite allows the adoption of this radiometric chronology for the California margin records. This chronology supports the Milankovitch theory of deglaciation. The suborbital history of climate variability during Termination II may account for records of early deglaciation.
Resumo:
Foraminifera are examined in twenty-six samples from a 44 metre succession of Quaternary glacial sediments recovered from the CRP-1 drillhole on Roberts Ridge, southwestern Ross Sea, Antarctica. In situ marine assemblages were documented in at least three of the six lithostratigraphic units, and it is likely that the remaining three interbedded diamicton units are also marine in origin. Peak foraminiferal diversities are documented in Unit 3.1 (73 species) and Unit 2.2 (32 species). Calcareous benthics dominate the assemblages, but may be accompanied by abundant occurrences of the planktonic Neogloboquadrina pachyderma. Low diversity agglutinated faunas appear in the uppermost strata of Units 4.1 and 2.2. A close relationship between lithofacics and foraminiferal biofacies points to marine environments that alternated between proximity to and distance from active glaciers and iceshelf fronts, with associated variations in salinity, sea-surface ice cover and the levels of rainout from debris-laden ice.