852 resultados para Blue Mountains Eye
Resumo:
v. 2 Plates
Resumo:
v. 1 Text
Resumo:
v.1:no.12(1899)
Resumo:
v.1:no.13(1899)
Resumo:
v.1:no.11(1899)
Resumo:
v.32:no.7(1950)
Resumo:
n.s. no.16(1983)
Resumo:
n.s. no.109(2006)
Resumo:
We document the expansion of the breeding distribution of the Little Blue Heron Egretta caerulea (Linnaeus, 1758) to 850 km beyond its previous southern limit in South America. In addition we present data on abundance, breeding biology and food of the species in the Patos Lagoon estuary, the area which the species recently colonized. The maximum abundance recorded in the breeding colony and in a nocturnal roosting site was 53 and 49 individuals respectively. Nesting occurred from September to March. Birds nested in a mixed breeding colony together with about 3,000 breeding pairs of seven other species of Pelecaniformes, in a swampy forest near the margin of the estuary. Five nests were between 1.5 and 4.3 m from the ground, on the shrub Daphnopsis racemosa (Thymelaeaceae), on the trees Sebastiana brasiliensis (Euphorbiaceae) and Mimosa bimucronata (Leguminosae), or on the bamboo Bambusa sp. (Poaceae). Four nests produced two fledglings each, while one nest was abandoned. Of 13 grouped samples of food regurgitated by five nestlings, Pink Shrimp Farfantepenaeus paulensis (Perez-Farfante, 1967) constituted 70% in mass, while total length of ingested fishes and shrimps varied mostly between 20 and 50 mm. Estuarine prey items represented 99% of the total food mass. The recent southward expansion of the breeding range of the Little Blue Heron in South America may be a response to climate warming of the Patos Lagoon estuary. Degradation of estuaries in the southwestern Atlantic may also be forcing the birds to breed in areas outside previous geographical range.
Resumo:
Combined media on photographic paper. 55½" x 86" Private Collection
Resumo:
NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.