963 resultados para Blood lactate
Resumo:
The objective of this study was to compare the effect of different strength training protocols added to endurance training on running economy (RE). Sixteen well-trained runners (27.4 +/- 4.4 years; 62.7 +/- 4.3 kg; 166.1 +/- 5.0 cm), were randomized into two groups: explosive strength training (EST) (n = 9) and heavy weight strength training (HWT) (n = 7) group. They performed the following tests before and after 4 weeks of training: 1) incremental treadmill test to exhaustion to determine of peak oxygen uptake and the velocity corresponding to 3.5 mM of blood lactate concentration; 2) submaximal constant-intensity test to determine RE; 3) maximal countermovernent jump test and; 4) one repetition maximal strength test in leg press. After the training period, there was an improvement in RE only in the HWT group (HWT = 47.3 +/- 6.8 vs. 44.3 +/- 4.9 ml.kg(-1) -min(-1); EST = 46.4 +/- 4.1 vs. 45.5 +/- 4.1 ml.kg(-1) .min(-1)). In conclusion, a short period of traditional strength training can improve RE in well-trained runners, but this improvement can be dependent on the strength training characteristics. When comparing to explosive training performed in the same equipment, heavy weight training seems to be more efficient for the improvement of RE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The slope of the distance-time relationship from maximal 200 and 400 in bouts (S(200-400)) has been increasingly employed for setting training intensities in swimming. However, physiological and mechanical responses at this speed are poorly understood. Thus, this study investigated blood lactate, heart rate (HR), stroke rate (SR), stroke length (SL) and RPE responses to an interval swimming set at S(200-400) in trained swimmers. In a 50-m pool, twelve athletes (16.5 +/- 1.2 yr, 176 +/- 7 cm, 68.4 +/- 5.4 kg, and 7.8 +/- 2.5% body fat) performed maximal 200 and 400 m crawl trials for S(200-400) determination (1.28 +/- 0.05 m/s). Thereafter, swimmers were instructed to perform 5 x 400 in at this speed with 1.5 min rest between repetitions. Three athletes Could not complete the set (exhaustion at 21.0 +/- 3.1 min). For the remaining swimmers (total set duration = 32.0 +/- 1.3 min) significant increases) (p < 0.05) in blood lactate (5.7 +/- 0.8-7.9 +/- 2.4 mmol/l), SR (29.6 +/- 3.2-32.1 +/- 4.1 cycles/min), HR (169 +/- 11-181 +/- 8 bpm) and RPE (13.3 +/- 1.6-16.3 +/- 2.6) were observed through the IS. Conversely, SL decreased significantly (p < 0.05) from the first to the fifth repetition (2.48 +/- 0.22-2.31 +/- 0.24 m/cycle). These results suggest that interval swimming at S(200-400) represents an intense physiological, mechanical and perceptual stimulus that can be sustained for a prolonged period by most athletes. (C) 2008 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aim of the present study was to investigate the potential benefits of cold water immersion (CWI) and active recovery (AR) on blood lactate concentration ([Lac]) and heart rate variability (HRV) indices following high-intensity exercise. 20 male subjects were recruited. on the first visit, an incremental test was performed to determine maximal oxygen consumption and the associated speed (MAS). The remaining 3 visits for the performance of constant velocity exhaustive tests at MAS and different recovery methods (6 min) were separated by 7-day intervals [randomized: CWI, AR or passive recovery (PR)]. The CWI and AR lowered [Lac] (p < 0.05) at 11, 13 and 15 min after exercise cessation in comparison to PR. There was a 'time' and 'recovery mode' interaction for 2 HRV indices: standard deviation of normal R-R intervals (SDNN) (partial eta squared = 0.114) and natural log of low-frequency power density (lnLF) (partial eta squared = 0.090). CWI presented significantly higher SDNN compared to PR at 15 min of recovery (p < 0.05). In addition, greater SDNN values were found in CWI vs. AR during the application of recovery interventions, and at 30 and 75 min post-exercise (p < 0.05 for all differences). The lnLF during the recovery interventions and at 75 min post-exercise was greater using CWI compared with AR (p < 0.05). For square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD) and natural log of high-frequency power density (lnHF), a moderate effect size was found between CWI and PR during the recovery interventions and at 15 min post-exercise. Our findings show that AR and CWI offer benefits regarding the removal of [Lac] following high-intensity exercise. While limited, CWI results in some improvement in post-exercise cardiac autonomic regulation compared to AR and PR. Further, AR is not recommended if the aim is to accelerate the parasympathetic reactivation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objectives of this study were to verify the effects of wet suits (WS) on the performance during 1500m swimming (V1500), on the velocity corresponding to the anaerobic threshold (VAT) and on the drag force (AD) as well as its coefficient (Cx). 19 swimmers randomly completed the following protocols on different days (with and without WS): 1) maximal performance of 1500m swimming; 2) VAT in field test, with fixed concentration of blood lactate (4 mM) and 3) determination of hydrodynamic indices (AD and Cx). The results demonstrated significant differences (p < 0.05) in the VAT (1.27±0.09; 1.21±0.06 m.s-1), and in the V1500 (1.21±0.08; 1.17±0.08 m.s-1), with and without WS, respectively. However the AD, and its Cx did not present significant differences (p>0.05) for the respective maximal speeds of swimming. In summary, we can conclude that WS allows swimmers to reach greater speeds in both, long- and short-course swims. This improvement can be related to the decrease of the AD, since with higher speeds (with WS) the subjects presented the same resistance, as they did when compared to speeds without a WS. Moreover, these data suggest that the methodology used in this study to determine the Cx is unable to detect the improvement caused by WS.
Resumo:
Obesity is an increasing problem in several countries, leading to health problems. Physical exercise, in turn, can be used effectively by itself or in combination with dietary restriction to trigger weight loss. The present study was designed to evaluate the effects of aerobic exercise training on lipid profile of obese male Wistar rats in order to verify if this model may be of value for the study of exercise in obesity. Obesity was induced by MSG administration (4mg/g, each other day, from birth to 14 days old) After 14 from drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (exercise trained). Exercise training consisted in 1h/day, 5 days/week, with an overload of 5% bw, for 10 weeks. Rats of the same age and strain, receiving saline at birth, were used as control (C), and subdivided into two groups: C-S and C-T. At the end of the experimental period, MSG-T and C-T rats showed similar blood lactate and muscle glycogen responses to exercise training and acute exercise. MSG-S rats showed significantly higher carcass fat, serum triacylglycerol, serum insulin and liver total fat than C-S rats. On the other hand, MSG-T rats had lower carcass fat, serum triacylglycerol and liver total fat than MSG-S rats. There were no statistical differences in food intake and serum free fatty acids among the groups studied. These data indicate that this model may be of value for the study of exercise effects on tissue and circulating lipid profile in obesity.
Resumo:
Exercise training is often recommended in prevention and treatment of obesity. The present study was designed to compare the effects of intermittent and continuous exercise on weight loss and carcass composition in obese rats. Obese male Wistar rats (monosodium glutamate [MSG] administration, 4 mg/g of body weight every other day from birth to 14 days old) were used. After drug administration, the rats were separated into three groups: MSG-SED (sedentary), MSG-CONT (continuous, swimming, 45 min/day, 5 days/week, with and overload of 5% body weight for 12 weeks) and MSG-INT (intermittent, 15s swimming intermitted by 15s rest, during 45 min, 5 days/week, with and overload of 15% body weight for 12 weeks). Rats of the same age and strain, administered with saline were used as control (SAL), and subdivided into three groups: SAL-SED, SAL-CONT and SAL-INT. The animals were evaluated at the 10 weeks of training and 8 weeks of its interruption. MSG rats showed higher carcass fat as well as weight and cell size in epididymal adipose tissue than SAL rats, indicting the efficacy of the drug in producing obesity. Intermittent training protocol led to a reduction in blood lactate accumulation during acute exercise and both protocols reduced body weight gain during the experiment in MSG rats. After 8 weeks of training interruption no differences were observed among groups in the examined parameters. Only intermittent exercise training improved aerobic fitness but both protocols were similarly efficient in determining weight loss. However, the effects were transitory, since they disappeared after detraining.
Resumo:
The perceived exertion has been a target of several investigations, many times with association with objective physiological indicators in exercise. Recently, the identification of the perceived exertion threshold (PET) was proposed in the water running, which presented no difference in relation to the critical velocity. Theoretically, both parameters would be indicators of the maximum steady state of variables such as V̇O2 and blood lactate. The objective of this work was to verify the coincidence between PET, critical power (PCrit) and an indicator of maximum V̇O2 steady state (PCrit') in cycle ergometer. Eight male participants were submitted to progressive effort test in order to determine V̇O2peak (46.7 ± 8.5 ml/kg/min) and to four rectangular tests until exhaustion for the estimation of the critical power model parameters, PET and PCrit'. The hyperbolic relation between mechanical power and time spent for the V̇O2peak to be reached in each test was used for the PCrit' estimation, considered as the asymptote in the power axis, and the portion of the anaerobic work capacity (CTAnaer) depleted up to the establishment of the V̇O2peak (CTAnaer'). In order to identify PET, the straight lines angular coefficients of the perceived exertion in time (ordinate) and the powers used (abscissa) were adjusted to a linear function that provided a point in the power axis in which the perceived exertion would be kept indefinitely stable. The parameters PCrit and CTAnaer were estimated by means of the power-time non-linear equation. In order to compare the estimations of PET, PCrit and PCrit', the analysis of variance ANOVA for repeated measurements was employed, and the associations were established through the Pearson correlation. CTAnaer and CTAnaer' were compared through the t test. PET (180 W ± 61 W), PCrit (174 W ± 43 W) and PCrit' (176 W ± 48 W) were not significantly different and the correlations were of 0.92-0.98. CTAnaer' (14,080 ± 5,219 J) was lower than CTAnaer (22,093 ± 9,042 J). One concludes that the PET predicts the intensity of PCrit and PCrit' with accuracy.
Resumo:
The main purpose of this study was to analyze the effect of the pedaling cadence (500 × 100 rpm) on the heart rate (HR) and the blood lactate response during incremental and constant workload exercises in active individuals. Nine active male individuals (20.9 ± 2.9 years old; 73.9 ± 6.5 kg; 1.79 ± 0.9 m) were submitted to two incremental tests, and to 6-8 constant workload tests to determine the intensity corresponding to the maximal steady state lactate (MLSSintens) in both cadences. The maximal power (Pmax) attained during the incremental test, and the MLSSintens were significantly lower at 100 rpm (240.9 ± 12.6 W; 148.1 ± 154.W) compared to 50 rpm (263.9 ± 18.6 W; 186.1 ± 21.2 W), respectively. The HRmax did not change between cadences (50 rpm = 191.1 ± 8.8 bpm; 100 rpm = 192.6 ± 9.9 bpm). Regardless the cadence, the HRmax percentage (70, 80, 90, and 100%) determined the same lactate concentrations during the incremental test. However, when the intensity was expressed in Pmax percentage or in absolute power, the lactate and the HR values were always higher at highest cadences. The HR corresponding to MLSSintens was similar between cadences (50 rpm = 162.5 ± 9.1 bpm; 100 rpm = 160.4 ± 9.2 bpm). Based on these results, it can be conclude that regardless the cadence employed (50 × 100 rpm), the use of the HR to individualize the exercise intensity indicates similar blood lactate responses, and this relationship is also kept in the exercise of constant intensity performed at MLSSintens. On the other hand, the use of the Pmax percentages depend on the cadence used, indicating different physiological responses to a same percentage.
Resumo:
Many investigations have shown that the coincidence between the ventilatory thresholds and those thresholds using the lactate response does not happen all of the time, suggesting that there is no relationship between the cause-effect between these phenomena. Thus, the present study had as main purpose to compare and correlate the Oxygen consumption (V̇O 2), the power (W), and the heart rate (HR) values attained using protocols to determine the Ventilatory Threshold (VT) and the Individual Anaerobic Threshold (IAT). The sampling was constituted by eight State and National level cyclists (age: 27.88 ± 8.77 years; body mass: 65.19 ± 4.40 kg; height: 169.31 ± 5,77 cm). The IAT was determined starting from a three minutes 50 W warm up with progressive increases of 50 W.3min -1 up to achieving the voluntary exhaustion, when the blood was collected in the last 20 seconds of each phase, and during the recovering period. In order to determine the VT, it was used the same protocol used to determine the IAT, but without performing the blood collection. The VT was identified through the changes in the pulmonary ventilation, as well as of the ventilatory equivalent of the O 2 and CO 2. The t-Student test showed no significant statistical difference in any of the attained variables. The associations found were high and significant. The V̇O 2 (ml.kg -1.min. -1), P (W), and HR (bpm) corresponding to the VT and IAT, as well as the associations between variables were respectively: 48.00 ± 3.82 vs. 48.08 ± 3.71 (r = 0.90); 256.25 ± 32.04 vs. 246.88 ± 33.91 (r = 0.84); 173.75 ± 9.18 vs. 171.25 ± 12.02 (r = 0.97). According to the results attained, it can be concluded that the IAT and the VT produce similar V̇O 2, W, and HR values, favoring the adoption of the VT because it is a non-invasive method to determine the anaerobic threshold in cyclists.
Resumo:
The aim of the present study was to investigate the effect of long-term oral supplementation of creatine on the physiological responses to aerobic training. Twelve purebred Arabian horses were submitted to aerobic training for 90 days, with and without creatine supplementation which consisted of the daily administration of 75g of creatine monohydrate mixed into the ration for 90 days of training. Physical conditioning was conducted on a high performance treadmill and training intensity was stipulated by calculating the V 4 (velocity at which blood lactate reaches 4mmol L -1) determined monthly for each animal. The individual intensity of physical force at 80% of aerobic threshold was established. An incremental exercise test was used to set the individual V4. After a warm up period of 4 min at 4m s -1), the speed was increased at 2min intervals to 6, 8 and 10m s -1). The blood samples were collected 15s before the end of each step to determine the concentration of lactate, packed cell volume, hemoglobin and red cell values. The results demonstrated a significant increase (P<0.05) in V4 in the groups that received creatine supplementation for 60 days or more when compared to the animals without creatine supplememntation. The other hematological variables were similar to all groups. The results showed that the prolonged creatine supplementation may have a beneficial al effect on the equine athletic performance.