968 resultados para Bivalves, Fossil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Vendoconularia triradiata Ivantsov and Fedonkin, recently described from Vendian (latest Proterozoic) strata of Russia, has been interpreted as a six-sided conulariid cnidarian. However, comparison of published illustrations of V. triradiata with Palaeozoic conulariids suggests that certain key features of the anatomy of V. triradiata should be reinterpreted. Specifically, features previously homologized with the corners of conulariid thecae may actually be homologous to the conulariid midlines. Under this new interpretation, the corners of the Vendoconularia theca were sulcate, and the midline of each face was non-sulcate and flanked by a pair of low internal carinae. This alternative set of hypotheses of homology makes the argument for a conulariid affinity for Vendoconularia stronger.
Resumo:
Seven species of marine bivalves, including six new taxa, are described from the Cape early Miocene Melville Formation which crops out on the Melville Peninsula, King George Island, West Antarctica. The bivalve assemblage includes representatives of the families Nuculidae, Ennucula frigida sp. nov., E. musculosa sp. nov.; Malletidae, Neilo (Neilo) rongelii sp. nov.; Sareptidae, Yoldia peninsularis sp. nov.; Limopsidae, Limopsis psimolis sp. nov.; Hiatellidae, Panopea (Panopea) sp. cf. P. regularis; and Pholadomyoida (Periploma acuta sp. nov.). Species studied come from four sedimentary sections measured in the upper part of the unit. Detailed morphologic features of nuculoid and areoid species are exceptionally well preserved and allow for the first time reconstruction of muscle insertions as well as dentition patterns of Cenozoic taxa. Known geological distribution of the species is in agreement with the early Miocene age assigned to the Cape Melville Formation. The bivalve fauna from Cape Melville Formation is the best known from Antarctic Miocene rocks, a time of complex geologic, paleogeographic and paleoclimatic changes in the continent. The new fauna introduces new taxonomic and palaeogeographic data that bear oil the question of opening of sea gateways and distribution of Cenozoic biota around Antarctica.
Resumo:
The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa (r(Site)(2) (9) (B. rosea) = 0.97 r(Site)(2) (1) (B.) (rosea) = 0.997, r(Site)(2) (9) (S.) (casali) = 0.9998, r(2) (Site) (1) (S.casali) = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems. (c) 2006 University of Washington. All rights reserved.
Resumo:
Over 14,000 specimens-5,204 brachiopods, 9,137 bivalves, and 178 gastropods-acquired from 30 collecting stations (0 to 45 m depth) in the Ubatuba and Picinguaba bays, southern Brazil, were compared for drilling frequencies. Beveled (countersunk) circular-to-subcircular borings (Oichnus-like drill holes) were found in diverse bivalves but also in the rhynchonelliform brachiopod Bouchardia rosea-a small, semi-infaunal to epifaunal, free-lying species that dominates the brachiopod fauna of the southern Brazilian shelf. Drill holes in bivalve mollusks and brachiopods are comparable in their morphology, average diameter, and diameter range, indicating attacks by a single type of drilling organism. Drill holes in brachiopods were rare (0.4%) and found only at five sampling sites. Drillings in bivalves were over 10 times as frequent as in brachiopods, but the average drilling frequency was still low (5.6%) compared to typical boring frequencies of Cenozoic mollusks. Some common bivalve species, however, were drilled at frequencies up to 50 times higher than those observed for shells of B. rosea from the same samples. Due to scarcity of drilled brachiopods, it is not possible to evaluate if the driller displayed a nonrandom (stereotyped) site, size, or valve preference. Drilled brachiopods may record (1) naticid or muricid predation, (2) predation by other drillers, (3) parasitic drillings, and (4) mistaken or opportunistic attacks. Low drilling frequency in brachiopods is consistent with recent reports on ancient and modern examples. The scarcity of drilling in brachiopods, coupled with much higher drilling frequencies observed in sympatric bivalves, suggests that drilling in brachiopods may have been due to facultative or erroneous attacks. The drilling frequencies observed here for the brachiopod-bivalve assemblages are remarkably similar to those reported for Permian brachiopod-bivalves associations. This report adds to the growing evidence for an intriguing macroecological stasis: multiple meta-analytical surveys of present-day and fossil rhynchonelliform brachiopods conducted in recent years also point to persistent scarcity and low intensity of biotic interactions between brachiopods and drilling organisms throughout their evolutionary history.
Resumo:
Eight taxa of marine invertebrates, including two new bivalve species, are described from the Low Head Member of the Polonez Cove Formation (latest early Oligocene) cropping out in the Vaureal Peak area, King George Island, West Antarctica. The fossil assemblage includes representatives of Brachiopoda (genera Neothyris sp. and Liothyrella sp.), Bivalvia (Adamussium auristriatum sp. nov., ?Adamussium cf. A. alanbeui Jonkers, and Limatula (Antarctolima) ferraziana sp. nov.), Bryozoa, Polychaeta (serpulid tubes) and Echinodermata. Specimens occur in debris flows deposits of the Low Head Member, as part of a fan delta setting in a high energy, shallow marine environment. Liothyrella sp., Adamussium auristriatum sp. nov. and Limatula ferraziana sp. nov. are among the oldest records for these genera in King George Island. In spite of their restrict number and diversification, bivalves and brachiopods from this study display an overall dispersal pattern that roughly fits in the clockwise circulation of marine currents around Antarctica accomplished in two steps. The first followed the opening of the Tasmanian Gateway at the Eocene/Oligocene boundary, along the eastern margin of Antarctica, and the second took place in post-Palaeogene time, following the Drake Passage opening between Antarctic Peninsula and South America, along the western margin of Antarctica.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
During a recent inspection in the Paleontological Collection of the Institute of Geosciences, University of São Paulo, we have identifi ed some specimens of undescribed mollusk bivalves. These called our attention for the following reasons: a) all specimens are internal molds of conjugated and closed articulated valves, some of them presenting fragments of silicifi ed shells; b) all internal molds have similar general shape and internal characters, representing specimens of the same taxon; c) the internal molds and silicifi ed valves are well preserved, including fragile structures, which are hardly preserved, such as the internal mold of the external ligament and muscle scars; d) and equally important, according to the labels of all specimens, they were collected from rocks of the Passa Dois Group (Permian), Serrinha Member of the Rio do Rasto Formation. Although who collected the shells and the precise geographic location of the specimens are still unknown, the detailed study of these fossils brings us to the conclusion that they are morphologically distinct from any heretofore published genus of the endemic fauna of bivalves from Passa Dois Group. Based in its general shape, hinge structure and muscles scars, the new form can be classifi ed under the Family Megadesmidae Vokes, 1967, the most diverse group of Permian bivalves of the Paraná Basin. The specimens are referred as Beurlenella elongatella new gen. and sp. The shell shape and taphonomy indicate that this bivalve was a shallow, rapid, active burrower, suspension feeder, probably preserved in situ, in event deposits.
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, whose production and application have been largely increased internationally. This study focuses on the evaluation of the activation energy of the thermal decomposition of three pure fuels: farnesane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends (20% farnesene and 80% of fossil diesel - 20F80D and 20% farnesane, 50% fossil diesel and 30% biodiesel - 20F50D30B). Activation energy has been determined from thermogravimetry and Model-Free Kinetics. Results showed that not only the cetane number is important to understand the behavior of the fuels regarding ignition delay, but also the profile of the activation energy versus conversion curves shows that the chemical reactions are responsible for the performance at the beginning of the process. In addition, activation energy seemed to be suitable in describing reactivity in the case of blends of renewable and fossil fuels. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fossil specimens of Heydrichia (?) poignantii, sp. nov. (Sporolithaceae, Sporolithales, Rhodophyta), representing the first confirmation of the genus in the fossil record, were discovered in thin sections of Albian limestones from the Riachuelo Formation, Sergipe Basin, and in thin sections of Albian -Cenomanian limestones from the Ponta do Mel Formation, Potiguar Basin in north-eastern Brazil. A detailed morphological-anatomical account of the species is provided, and its placement in Heydrichia is discussed in relation to current classification proposals. Comparisons with the four other known species of the genus, all non-fossil, show that H. poignantii is the only known species of Heydrichia in which thalli are encrusting to sparsely warty to horizontally layered with overlapping lamellate branches that commonly appear variously curved or arched, and in which thalli have sporangial complexes that become buried in the thallus. The evolutionary history of Heydrichia remains uncertain, but available data suggest that the genus may have diverged from the sporolithacean genus Sporolithon, known as early as Hauterivian times (c. 129.4-132.9 +/- 1 Ma) from Spain (and newly reported here from Switzerland), or it may have arisen from a graticulacean alga such as Graticula, dating from mid-Silurian times (c. 427-435 Ma). Current data also suggest that Heydrichia is more likely to have arrived in Brazil from Central Atlantic waters than from higher latitude South Atlantic waters. This implies that currently living species in southern Africa probably arose later from ancestors further equatorward in the South Atlantic, although confirming studies are needed. All non-fossil species of Heydrichia are known only from the southern hemisphere.
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, which production and application have been largely increased internationally. This study focus on the development of a correlation between apparent activation energy (Ea) and NOx emission of the thermal decomposition of three pure fuels: farnasane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends. Apparent Activation energy was determined by using thermogravimetry and Model-Free Kinetics. NOx emission was obtained from the European Stationary Cycle (ESC) with OM 926LA CONAMA P7/Euro 5 engine. Results showed that there is a linear correlation between apparent activation energy and NOx emission with R2 of 0,9667 considering pure fuels and their blends which is given as: NOx = 2,2514Ea - 96,309. The average absolute error of this correlation is 2.96% with respect to the measured NOx value. The main advantage of this correlation is its capability to predict NOx emission when either a new pure fuel or a blend of fuels is proposed to use in enginees.
Resumo:
Three new centric diatom species assigned to a new genus are described from Miocene lacustrine deposits of Idaho. Species of the new genus, Mesodictyon, have the areola cribrum in the middle of the loculus, strutted processes and radiating, non-fasciculated striae. The strutted processes of M. magnum (diameter 60-150 μm) have long (2-3 μm) tubular extensions. The strutted processes of M. fovis (diameter 14-80 μm) are in distinct pits near the junction of the face and mantle. The valve face of M. undulatum (diameter 10-44 μm) is weakly tangentially undulate. Preliminary evidence indicates that Mesodictyon has a wide geographic distribution and may be a useful biostratigraphic marker.