964 resultados para Biometano, Smart Grid Gas, AEEG


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demand response has gain increasing importance in the context of competitive electricity markets environment. The use of demand resources is also advantageous in the context of smart grid operation. In addition to the need of new business models for integrating demand response, adequate methods are necessary for an accurate determination of the consumers’ performance evaluation after the participation in a demand response event. The present paper makes a comparison between some of the existing baseline methods related to the consumers’ performance evaluation, comparing the results obtained with these methods and also with a method proposed by the authors of the paper. A case study demonstrates the application of the referred methods to real consumption data belonging to a consumer connected to a distribution network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodologies to come up with a good solution with a reasonable amount of time. The presented paper proposes a Simulated Annealing (SA) approach to determine the ERM considering an intensive use of DERs, mainly EVs. In this paper, the possibility to apply Demand Response (DR) programs to the EVs is considered. Moreover, a trip reduce DR program is implemented. The SA methodology is tested on a 32-bus distribution network with 2000 EVs, and the SA results are compared with a deterministic technique and particle swarm optimization results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of distribution generation and smart grid research works are dedicated to the study of network operation parameters, reliability among others. However, many of this research works usually uses traditional test systems such as IEEE test systems. This work proposes a voltage magnitude study in presence of fault conditions considering the realistic specifications found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzyprobabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12 bus sub-transmission network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The positioning of the consumers in the power systems operation has been changed in the recent years, namely due to the implementation of competitive electricity markets. Demand response is an opportunity for the consumers’ participation in electricity markets. Smart grids can give an important support for the integration of demand response. The methodology proposed in the present paper aims to create an improved demand response program definition and remuneration scheme for aggregated resources. The consumers are aggregated in a certain number of clusters, each one corresponding to a distinct demand response program, according to the economic impact of the resulting remuneration tariff. The knowledge about the consumers is obtained from its demand price elasticity values. The illustrative case study included in the paper is based on a 218 consumers’ scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A eficiência energética tem um papel de importância crescente devido a questões ambientais e ao aumento dos custos energéticos. Recentemente foram tomadas medidas para regular o consumo e o fornecimento de energia reativa em Portugal, que tornaram mais rigorosas as condições de faturação. O custo crescente da energia e a implementação das smart grids apontam para um futuro de maior rigor sobre a utilização da energia reativa. Não será de estranhar que as regras de faturação sejam mais severas daqui a uns anos. O desenvolvimento tecnológico nas áreas da análise da energia e nas formas de controlo da compensação de energia reativa permitem resultados muito mais eficazes que aqueles apresentados pelos vulgares sistemas a contactores que constituem a maioria dos cenários. Apesar de terem um custo inicial superior, os sistemas de compensação do fator de potência com filtragem passiva de harmónicos, desde que projetados corretamente, trazem vantagens evidentes na sua exploração a longo prazo. Com este trabalho pretende-se promover a sensibilização para o uso de sistemas mais eficientes na compensação de energia reativa e para que estes sejam projetados mais à medida das necessidades de cada local. Também se demonstra a extrema importância da adequação destes sistemas à qualidade de energia do local, principalmente em termos de conteúdo harmónico. Desta forma, os sistemas serão mais flexíveis em termos de utilização e possibilitam a sua adaptação às necessidades mesmo que as regras de faturação de energia reativa se tornem mais rigorosas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.