954 resultados para Biological An Hydraulic Modelling
Resumo:
Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G), bulk density (D) and organic matter content (M). The penetration resistance curve (PR) was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md), where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Pseudomonas fluorescens CHA0, an effective biological control agent of soilborne plant diseases, is naturally non-mucoid. We have isolated a highly mucoid Tn5 insertion mutant of strain CHA0. The mucoid phenotype was found to be due to the overproduction of exopolysaccharide (EPS), as a result of a mutation in the mucA gene. The wild-type mucA gene was cloned by a two-step, Tn5-dependent cloning procedure previously described and the deduced amino acid sequence showed 71% identity with MucA of P. aeruginosa, a negative regulator of the alternative sigma factor AlgU (=s22, sE). As in P. aeruginosa, mucA is preceded by the algU gene encoding s22 (91% identity at the amino acid sequence level). A mucA in-frame deletion mutant of CHA0 overproduced EPS and formed mucoid colonies, whereas an algU in-frame deletion mutant showed a non-mucoid phenotype. Pyoluteorin, an antibiotic produced by P. fluorescens, was found to be entrapped in EPS of a mucoid mutant. In natural soil, mucoidy negatively affected survival of the bacteria, suggesting that under these conditions the potential to produce abundant EPS does not confer a selective advantage on the bacteria.
Resumo:
Knowledge about spatial biodiversity patterns is a basic criterion for reserve network design. Although herbarium collections hold large quantities of information, the data are often scattered and cannot supply complete spatial coverage. Alternatively, herbarium data can be used to fit species distribution models and their predictions can be used to provide complete spatial coverage and derive species richness maps. Here, we build on previous effort to propose an improved compositionalist framework for using species distribution models to better inform conservation management. We illustrate the approach with models fitted with six different methods and combined using an ensemble approach for 408 plant species in a tropical and megadiverse country (Ecuador). As a complementary view to the traditional richness hotspots methodology, consisting of a simple stacking of species distribution maps, the compositionalist modelling approach used here combines separate predictions for different pools of species to identify areas of alternative suitability for conservation. Our results show that the compositionalist approach better captures the established protected areas than the traditional richness hotspots strategies and allows the identification of areas in Ecuador that would optimally complement the current protection network. Further studies should aim at refining the approach with more groups and additional species information.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
Selostus: Maatalouspolitiikkauudistusten vaikutuksista pellonkäytön diversiteettiin
Resumo:
The current challenge in a context of major environmental changes is to anticipate the responses of species to future landscape and climate scenarios. In the Mediterranean basin, climate change is one the most powerful driving forces of fire dynamics, with fire frequency and impact having markedly increased in recent years. Species distribution modelling plays a fundamental role in this challenge, but better integration of available ecological knowledge is needed to adequately guide conservation efforts. Here, we quantified changes in habitat suitability of an early-succession bird in Catalonia, the Dartford Warbler (Sylvia undata) ― globally evaluated as Near Threatened in the IUCN Red List. We assessed potential changes in species distributions between 2000 and 2050 under different fire management and climate change scenarios and described landscape dynamics using a spatially-explicit fire-succession model that simulates fire impacts in the landscape and post-fire regeneration (MEDFIRE model). Dartford Warbler occurrence data were acquired at two different spatial scales from: 1) the Atlas of European Breeding Birds (EBCC) and 2) Catalan Breeding Bird Atlas (CBBA). Habitat suitability was modelled using five widely-used modelling techniques in an ensemble forecasting framework. Our results indicated considerable habitat suitability losses (ranging between 47% and 57% in baseline scenarios), which were modulated to a large extent by fire regime changes derived from fire management policies and climate changes. Such result highlighted the need for taking the spatial interaction between climate changes, fire-mediated landscape dynamics and fire management policies into account for coherently anticipating habitat suitability changes of early succession bird species. We conclude that fire management programs need to be integrated into conservation plans to effectively preserve sparsely forested and early succession habitats and their associated species in the face of global environmental change.
Resumo:
The linking of North and South America by the Isthmus of Panama had major impacts on global climate, oceanic and atmospheric currents, and biodiversity, yet the timing of this critical event remains contentious. The Isthmus is traditionally understood to have fully closed by ca. 3.5 million years ago (Ma), and this date has been used as a benchmark for oceanographic, climatic, and evolutionary research, but recent evidence suggests a more complex geological formation. Here, we analyze both molecular and fossil data to evaluate the tempo of biotic exchange across the Americas in light of geological evidence. We demonstrate significant waves of dispersal of terrestrial organisms at approximately ca. 20 and 6 Ma and corresponding events separating marine organisms in the Atlantic and Pacific oceans at ca. 23 and 7 Ma. The direction of dispersal and their rates were symmetrical until the last ca. 6 Ma, when northern migration of South American lineages increased significantly. Variability among taxa in their timing of dispersal or vicariance across the Isthmus is not explained by the ecological factors tested in these analyses, including biome type, dispersal ability, and elevation preference. Migration was therefore not generally regulated by intrinsic traits but more likely reflects the presence of emergent terrain several millions of years earlier than commonly assumed. These results indicate that the dramatic biotic turnover associated with the Great American Biotic Interchange was a long and complex process that began as early as the Oligocene-Miocene transition.
Resumo:
Freshwater ecosystems and their biodiversity are presently seriously threatened by global development and population growth, leading to increases in nutrient inputs and intensification of eutrophication-induced problems in receiving fresh waters, particularly in lakes. Climate change constitutes another threat exacerbating the symptoms of eutrophication and species migration and loss. Unequivocal evidence of climate change impacts is still highly fragmented despite the intensive research, in part due to the variety and uncertainty of climate models and underlying emission scenarios but also due to the different approaches applied to study its effects. We first describe the strengths and weaknesses of the multi-faceted approaches that are presently available for elucidating the effects of climate change in lakes, including space-for-time substitution, time series, experiments, palaeoecology and modelling. Reviewing combined results from studies based on the various approaches, we describe the likely effects of climate changes on biological communities, trophic dynamics and the ecological state of lakes. We further discuss potential mitigation and adaptation measures to counteract the effects of climate change on lakes and, finally, we highlight some of the future challenges that we face to improve our capacity for successful prediction.
Resumo:
The aim of the study is to obtain a mathematical description for an alternative variant of controlling a hydraulic circuit with an electrical drive. The electrical and hydraulic systems are described by basic mathematical equations. The flexibilities of the load and boom is modeled with assumed mode method. The model is achieved and proven with simulations. The controller is constructed and proven to decrease oscillations and improve the dynamic response of the system.
Resumo:
Bodily injury claims have the greatest impact on the claim costs of motor insurance companies. The disability severity of motor claims is assessed in numerous European countries by means of score systems. In this paper a zero inflated generalized Poisson regression model is implemented to estimate the disability severity score of victims in-volved in motor accidents on Spanish roads. We show that the injury severity estimates may be automatically converted into financial terms by insurers at any point of the claim handling process. As such, the methodology described may be used by motor insurers operating in the Spanish market to monitor the size of bodily injury claims. By using insurance data, various applications are presented in which the score estimate of disability severity is of value to insurers, either for computing the claim compensation or for claim reserve purposes.