426 resultados para Biofuel
Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas
Resumo:
酶生物燃料电池(EBFC)是利用酶作为催化剂将化学能转化为电能的装置。由于氧化还原蛋白质和酶通常具有复杂的空间结构,活性中心深埋在它们的肽链中,很难与基底电极进行直接电子传递,从而影响了电池的性能。但使用适当的载体对电极表面进行修饰,可以实现直接的、快速的电子传递。因此,开发稳定性好、成本低、能够有效促进氧化还原蛋白质或酶与基底电极进行直接电子传递的载体成为EBFC发展中的重要课题之一。 本论文主要集中于EBFC中蛋白质或酶载体的选择方面的研究。探讨不同性质的载体,包括半导体电物质、生物相容性物质和导电物质对氧化还原蛋白质或酶的直接电子传递的影响。同时以SiO2纳米粒子为例,探讨了载体促进氧化还原蛋白质直接电子传递的作用机理。通过对不同载体的考察,最终选择了一种合适的材料组装成葡萄糖/O2 EBFC,并考察了EBFC的性能。主要结果如下: 1.将SiO2纳米粒子固定在GC电极上,成功实现了细胞色素c(Cyt c)的准可逆的直接电化学反应,并在这基础上提出双功能机理模型,说明了半导体对氧化还原蛋白质和电极之间的直接电子迁移的影响。 2.发现Cyt c能够在SBA-15膜修饰的电极上实现准可逆的直接电化学反应,并能够对H2O2产生较好的电催化还原效果。 3.以生物相容性物质壳聚糖为载体,分别研究了Cyt c、微过氧化物酶(MP-11)和葡萄糖氧化酶(GOD)的准可逆的直接电化学反应。并发现固载在壳聚糖上的Cyt c和MP-11对H2O2和O2还原有很好的电催化活性,而固载在壳聚糖上的GOD对葡萄糖氧化有很好的电催化活性。 4.以碳纳米管(CNT)为载体,实现了GOD的准可逆的直接电化学反应。并在氧化还原媒介体的作用下实现了其对葡萄糖的电催化氧化。 5.将筛选出的最佳载体组装成葡萄糖/O2 EBFC,分别以葡萄糖氧化酶和漆酶作为阳极和阴极的催化剂,制得有隔膜和无隔膜的EBFC。
Resumo:
生物燃料电池作为一种真正意义上的理想绿色环保电源,由于可作为小功率长寿命的体内植入电源,已成为人们研究的热点课题之一。目前对生物燃料电池的研究主要集中在间接型生物燃料电池,已取得一定进展。但是间接型生物燃料电池具有电子传递链长、效率低等弱点,而直接型生物燃料电池有望克服以上缺点,成为更具研究潜力的新一代生物燃料电池。本文从探索简单、有效的酶固定方法入手,制备炭载辣根过氧化物酶(HRP)、漆酶(Lac)、酪氨酸酶(Tyr)作直接型生物燃料电池的阴极催化剂和炭载葡萄糖氧化酶(GoD)作阳极催化剂。用多种谱学方法表征了炭载酶催化剂的结构特征和用电化学方法研究了炭载酶的直接电化学及电催化性能。得到的主要结果和结论如下:1.以比活性高、稳定、结构清楚、有纯的商品化试剂且价廉的HRP为模型分子来探索用平衡吸附法将HRP固定到活性炭表面,用Nofion膜加固并修饰到玻碳(GC)电极上,以期制备得到炭载HRP修饰的Gc电极(HRP-C/GC)。实验结果表明,炭载HRP能进行准可逆的直接电化学反应,式电位(0)在50-700mv/s的范围内几乎不随扫速变化,平均值为C0.362±0.001)v,表观速率常数(ks)为(3.4±0.69)s-1HRP-C/GC电极对HZoZ还原有很好和稳定的电催化活性,表明固定在活性炭上的HRP能保持其生物活性,而且能稳定数月时间。因此,固定在活性炭上的HRP有可能用作直接型生物燃料电池的阴极催化剂。由上述结果可见,用平衡吸附法把HRP固载到活性炭上,并用Nofion膜加固的酶电极的制备方法具有简单且有效的特点,有可能作为直接型生物燃料电池酶催化剂的制备方法。2.用平衡吸附法将Lac和Tyr分别固定到活性炭上,发现炭载Lac和Tyr都能进行准可逆的直接电化学反应,其0,在10-150mv/s的范围内几乎不随扫速而变化,分别为-0.166和-0.139v。另外,还发现炭载Lac和Tyr对02的还原有明显的电催化作用,表明炭载Lac和Tyr仍能保持它们的生物活性,因而能作直接型生物燃料电池的阴极催化剂。3.用平衡吸附法将葡萄糖氧化酶(GOD)固定到活性炭表面,发现炭载GOD能进行准可逆的直接电化学反应,其0,在10-200mv/s的范围内几乎不随扫速而变化,平均值为C0.467±0.002)v;ks值为(1.18±0.59)5-1;且其直接电化学反应是2e+ZH+的过程。另外,还发现炭载GOD对p-D(+)葡萄糖的氧化有明显的电催化作用,表明炭载GOD没有发生变性,仍保持其生物活性,所以能用作直接型生物燃料电池的阳极催化剂。
Resumo:
本论文分为两个部分研究了铿离子电池和生物燃料电池中的关键材料,主要的创新点和结论如下。采用聚合物电解质是提高铿二次电池性能的有效方法之一。聚合物电解质良好电导率、高铿离子迁移数、宽电化学窗口以及好的机械性能是其应用于铿二次电池中的关键。论文的第一部分主要讨论了聚合物、增塑剂和无机纳米粒子等对复合电解质体系的化学和物理性质的影响。我们采用溶液浇注一浸渍法制备了各种纳米复合聚合物电解质,例如开发出基于PVDFHFP或梳状聚合物基体的全固态以及聚合物和碳酸醋形成的胶体聚合物电解质体系。首次制备了具有较高离子电导率的单离子聚合物电解质。考察了两类纳米粒子填充物对体系的影响:一种是“惰性”发烟硅;另一种是“活性”蒙脱土。比较了全固态和胶体聚合物电解质体系电化学性质的不同之处。采用电化学交流阻抗,示差扫描量热法,X衍射,拉曼光谱,红外光谱,扫描电镜,循环伏安等方法详细研究了聚合物电解质中各组分对体系离子电导率和机械性能的影响。研究结果表明,纳米复合物为开发具有特定电化学和机械性能的电解质提供了一种有效的途径,它对聚合物电解质的物理性质影响明显。纳米粒子的加入增强了体系的机械性能,同时也使体系对溶剂的吸附能力增加。在全固态聚合物电解质中加入增塑剂,形成胶体态聚合物电解质,体系的电导率大大增加。所制备的胶体复合物电解质的室温电导率可以达到10-3s cm-1的数量级,机械强度好,阳离子迁移数高。指出选择合适的添加剂及复合方法,控制界面的结构和形态,形成尽可能多的高导电的界面,是获得电导率高和机械性能良好的聚合物电解质的有效途径。并讨论了聚合物电解质在铿离子电池中的应用。 近年来,针对生物燃料电池的研究得到了广泛关注,其中实现蛋白质酶分子和电极之间的直接电子传递是研究中的热点。论文的第二部分主要研究了生物燃料电池中的酶电极。通过对碳纳米管(MWNTs)进行预处理,使其表面带有功能性官能团,从而可以实现酶分子在碳纳米管表面的固定,同时还保持了其生物活性。采用吸附法将微过氧化物酶-11(MP-11)或葡萄糖氧化酶(GOx)等生物分子固定到MWNTs上制成酶修饰电极,研究MWNTs对酶和电极之间电子传递的促进作用。当酶分子(MP-11,GOX)固定到MWNTs表面后,循环伏安结果显示出一对可逆的氧化还原峰,对应酶分子的直接电子转移。研究结果表明这种方法可以扩展到固定其他生物酶分子以及实现蛋白质酶分子和电极之间的直接电化学,可以获得一系列氧化还原酶分子的电化学参数,如反应速率常数等。同时,我们还研究了酶修饰电极对其底物的电催化反应。研究结果表明,该修饰电极对底物的电化学反应表现出较好的催化活性。我们还研究了酶分子在MWNTs修饰铂微电极上的电化学行为。这些研究为研制生物燃料电池提供了一种固定酶以及制备电极材料较好的方法。
Resumo:
Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range.
Resumo:
It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.
Resumo:
The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.
Resumo:
Two typical and important copper-containing enzymes, laccase (Lac) and tyrosinase (Tyr), have been immobilized on the surface of active carbon with simple adsorption method. The cyclic voltammetric results indicated that the active carbon could promote the direct electron transfer of both Lac and Tyr and a pair of well-defined and nearly symmetric redox peaks appeared on the cyclic voltammograms of Lac or Tyr with the formal potential, E-0', independent on the scan rate. The further experimental results showed that the immobilized copper-containing oxidase displayed an excellent electrocatalytic activity to the electrochemical reduction of O-2. The immobilization method presented here has several advantages, such as simplicity, easy to operation and keeping good activity of enzyme etc., and could be further used to study the direct electrochemistry of other redox proteins and enzymes and fabricate the catalysts for biofuel cell.
Resumo:
The carbon nanotubes-chitosan (CNTs-CS) composite provides a suitable biosensing matrix due to its good conductivity, high stability, and good biocompatibility. Enzymes can be firmly incorporated into the matrix without the aid of other cross-linking reagents. The composite is easy to form insoluble film in solution above pH 6.3. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the CNTs-CS composite film has been developed. At pH 6.0, the fungi laccase incorporated into the composite film remains better catalytic activity than that dissolved in solution. The system is in favor of the accessibility of substrate to the active site of laccase, thus the affinity to substrates is improved greatly, such as 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), catechol, and 0, with K. values of 19.86 mu M, 9.43 mu M, and 3.22 mM, respectively. The major advantages of the as-prepared biosensor are: detecting different substrates (ABTS, catechol, and 02), possessing high affinity and sensitivity, durable long-term stability, and facile preparation procedure. On the other hand, the system can be applied in fabrication of biofuel cells as the cathodic catalysts based on its good electrocatalysis for oxygen reduction.
Resumo:
Sorghum is the fifth most important cereal worldwide and is a major source of agricultural residues in tropical regions. Bioconversion of whole sorghum crop residues comprising stalks, leaves, peduncles and panicles to ethanol has great potential for improving ethanol yield per sorghum crop cultivated, and for sustainable biofuel production. Effective pretreatment of sorghum lignocellulosic biomass is central to the efficiency of subsequent fermentation to ethanol. Previous studies have focused on bioconversion of sorghum stalks and/or leaves only to bioethanol, but the current study is the first report dealing with whole crop residues. We specifically focused on the impact of Nigerian sorghum cultivation location and cultivar type on the potential ethanol yield from whole sorghum crop residues. Efficient bioconversion of whole sorghum residues to ethanol provides a sustainable route for utilisation of crop residues thereby providing a non-food feedstock for industrial scale bioethanol production.
Resumo:
Gemstone Team Genes to Fuels
Resumo:
Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.
Resumo:
Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.
Resumo:
Fuel-only algal systems are not economically feasible because yields are too low and costs too high for producing microalgal biomass compared to using agricultural residues e.g. straw. Biorefineries which integrate biomass conversion processes and equipment to produce fuels, power and chemicals from biomass, offer a solution. The CO2 microalgae biorefinery (D-Factory) is a 10 million Euro FP7-funded project which will cultivate the microalga Dunaliella in highly saline non-potable waters in photobioreactors and open raceways and apply biorefinery concepts and European innovations in biomass processing technologies to develop a basket of compounds from Dunaliella biomass, including the high value nutraceutical, β-carotene, and glycerol. Glycerol now finds markets both as a green chemical intermediate and as a biofuel in CHP applications as a result of novel combustion technology. Driving down costs by recovering the entire biomass of Dunaliella cells from saline cultivation water poses one of the many challenges for the D-Factory because Dunaliella cells are both motile, and do not possess an external cell wall, making them highly susceptible to cell rupture. Controlling expression of desired metabolic pathways to deliver the desired portfolio of compounds flexibly and sustainably to meet market demand is another. The first prototype D-Factory in Europe will be operational in 48 months, and will serve as a robust manifestation of the business case for global investment in algae biorefineries and in large-scale production of microalgae.
Resumo:
The overall aim of this work was to establish the optimum conditions for acid hydrolysis of hemicellulosic biomass in the form of potato peel. The hydrolysis reaction was undertaken in a 1l high pressure pilot batch reactor using dilute phosphoric acid. Analysis of the decomposition rate of hemicellulosic biomass (namely Cellulose, Hemicellulose and lignin) was undertaken using HPLC of the reaction products namely, 5 and 6 carbon sugars. Process parameters investigated included, reactor temperature (from 135 degrees C to 200 degrees C) and acid concentration (from 2.5% (w/w) to 10% (w/w)). Analysis of the reactor products indicated that high conversion of cellulose to glucose was apparent although arabinose conversion was quite low due to thermally un-stability. However, an overall sugar yield is 82.5% was achieved under optimum conditions. This optimum yield was obtained at 135 degrees C and 10% (w/w) acid concentration. 55.2 g sugar/100 g dry potato peel is produced after a time of 8 min. The work indicates that the use of potato peel may be a feasible option as a feed material for the production of sugars for biofuel synthesis, due its low cost and high sugar yields. (C) 2009 Elsevier B.V. All rights reserved.