995 resultados para Biofilm Development
Resumo:
Background Falls are one of the greatest concerns among the elderly A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history It was also aimed to determine whether these parameters of muscle performance (i e, peak torque and rate of torque development) are related to the number of falls. Methods: Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present Then, participants with no fall history (Cl; n = 13; 67.6[7.5] years-old), one fall (GII; n = 8, 66 0[4 91 years-old) and two or more falls (GIII, n = 10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified Findings. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (Cl) was greater than that observed in the fallers (P < 0.05) and had a significant relationship with the number of falls (P < 0 05) Interpretation. The greater knee flexor muscles` rate of torque development found in the non-fallers in comparison to the fallers indicated that the ability of the elderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque (C) 2010 Published by Elsevier Ltd
Anthropometric characteristics and motor skills in talent selection and development in indoor soccer
Resumo:
Kick performance, anthropometric characteristics, slalom, and linear running were assessed in 49 (24 elite, 25 nonelite) postpubertal indoor soccer players in order to (a) verify whether anthropometric characteristics and physical and technical capacities can distinguish players of different competitive levels, (b) compare the kicking kinematics of these groups, with and without a defined target, and (c) compare results on the assessments and coaches` subjective rankings of the players. Thigh circumference and specific technical capacities differentiated the players by level of play; cluster analysis correctly classified 77.5% of the players. The correlation between players` standardized measures and the coaches` rankings was 0.29. Anthropometric characteristics and physical capacities do not necessarily differentiate players at post-pubertal stages and should not be overvalued during early development. Considering the coaches` rankings, performance measures outside the specific game conditions may not be useful in identification of talented players.
Resumo:
Mixed martial arts (MMA) have become a fast-growing worldwide expansion of martial arts competition, requiring high level of skill, physical conditioning, and strategy, and involving a synthesis of combat while standing or on the ground. This study quantified the effort-pause ratio (EP), and classified effort segments of stand-up or groundwork development to identify the number of actions performed per round in MMA matches. 52 MMA athletes participated in the study (M age = 24 yr., SD = 5; average experience in MMA = 5 yr., SD = 3). A one-way analysis of variance with repeated measurements was conducted to compare the type of action across the rounds. A chi-squared test was applied across the percentages to compare proportions of different events. Only one significant difference (p < .05) was observed among rounds: time in groundwork of low intensity was longer in the second compared to the third round. When the interval between rounds was not considered, the EP ratio (between high-intensity effort to low-intensity effort plus pauses) WE S 1:2 to 1:4. This ratio is between ratios typical for judo, wrestling, karate, and taekwondo and reflects the combination of ground and standup techniques. Most of the matches ended in the third round, involving high-intensity actions, predominantly executed during groundwork combat.
Resumo:
The current study is a piece from the original project entitled ""Diagnosis of the Developing Program of Artistic Gymnastics in Brazil"". Among other issues discussed in this main project, our objective was to investigate the development of the gymnast who are entering the intensive training and are potential to be representative to national teams. We interviewed 46 coaches from 29 sports institutions in Brazil. Regarding methodology, we used a semi-structured interview and for data treatment we adopted the content analysis proposed by Bardin (2004). We could evidence that coaches have concern regarding many aspects of the children development, and have been trying to equate sports demands with gymnasts characteristics and needs.
Resumo:
Considering the difficulties in finding good-quality images for the development and test of computer-aided diagnosis (CAD), this paper presents a public online mammographic images database free for all interested viewers and aimed to help develop and evaluate CAD schemes. The digitalization of the mammographic images is made with suitable contrast and spatial resolution for processing purposes. The broad recuperation system allows the user to search for different images, exams, or patient characteristics. Comparison with other databases currently available has shown that the presented database has a sufficient number of images, is of high quality, and is the only one to include a functional search system.
Resumo:
This paper presents the proposal for a reference model for developing software aimed at small companies. Despite the importance of that represent the small software companies in Latin America, the fact of not having its own standards, and able to meet their specific, has created serious difficulties in improving their process and also in quality certification. In this sense and as a contribution to better understanding of the subject they propose a reference model and as a means to validate the proposal, presents a report of its application in a small Brazilian company, committed to certification of the quality model MPS.BR.
Resumo:
Many authors point out that the front-end of new product development (NPD) is a critical success factor in the NPD process and that numerous companies face difficulties in carrying it out appropriately. Therefore, it is important to develop new theories and proposals that support the effective implementation of this earliest phase of NPD. This paper presents a new method to support the development of front-end activities based on integrating technology roadmapping (TRM) and project portfolio management (PPM). This new method, called the ITP Method, was implemented at a small Brazilian high-tech company in the nanotechnology industry to explore the integration proposal. The case study demonstrated that the ITP Method provides a systematic procedure for the fuzzy front-end and integrates innovation perspectives into a single roadmap, which allows for a better alignment of business efforts and communication of product innovation goals. Furthermore, the results indicated that the method may also improve quality, functional integration and strategy alignment. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the performance and biofilm characteristics of a full-scale anaerobic sequencing batch biofilm reactor (ASBBR; 20 m(3)) containing biomass immobilized on an inert support (mineral coal) for the treatment of industrial wastewater containing a high sulfate concentration. The ASBBR reactor was operated during 110 cycles (48 h each) at sulfate loading rates ranging from 6.9 to 62.4 kgSO(4)(2-)/cycle corresponding to sulfate concentrations of 0.58-5.2 gSO(4)(2-)/L. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. After 71 cycles the mean sulfate removal efficiency was 99%, demonstrating a high potential for biological sulfate reduction. The biofilm formed in the reactor occurred in two different patterns, one at the beginning of the colonization and the other of a mature biofilm. These different colonization patterns are due to the low adhesion of the microorganisms on the inert support in the start-up period. The biofilm population is mainly made up of syntrophic consortia among sulfate-reducing bacteria and methanogenic archaea such as Methanosaeta spp.
Resumo:
The objective of this work was to evaluate the influence of different carbon sources and the carbon/nitrogen ratio (C/N) on the production and main composition of insoluble extracellular polymers (EPS) produced in an anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized biomass in polyurethane foam. The yield of EPS was 23.6 mg/g carbon, 13.3 mg/g carbon, 9.0 mg/g carbon and 1.4 mg/g carbon when the reactor was fed with glucose, soybean oil. fat acids, and meat extract, respectively. The yield of EPS decreased from 23.6 to 2.6 mg/g carbon as the C/N ratio was decreased from 13.6 to 3.4 gC/gN, using glucose as carbon source. EPS production was not observed under strict anaerobic conditions. The results suggest that the carbon source, microaerophilic conditions and high C/N ratio favor EPS production in the ASBBR used for wastewater treatment. Cellulose was the main exopolysaccharide observed in all experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.
Resumo:
This paper presents the results from 92 cycles of an anaerobic sequencing batch biofilm reactor containing biomass immobilized on inert support (mineral coal) applied for the treatment of an industrial wastewater containing high sulfate concentration. The pilot-scale reactor, with a total volume of 1.2 m(3), was operated at sulfate loading rates ranging from 0.15 to 1.90 kgSO(4)(2-)/cycle (48 It - cycle) corresponding to sulfate concentrations of 0.25 to 3.0 gSO(4)(2-) l(-1). Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. Influent sulfate concentrations were increased in order to evaluate the minimum COD/sulfate ratio at which high reactor performance could be maintained. The mean sulfate removal efficiency remained between the range of 88 to 92% at several sulfate concentrations. Temporal profiles along the 48 h cycles were carried out under stable operation at sulfate concentrations of 1.0, 2.0 and 3.0 gSO(4)(2-) l(-1). Sulfate removal reached 99% for cycle times of 15, 25, and 30 h, and the effluents sulfate concentrations were lower than 8 mgSO(4)(2-) l(-1). The results demonstrate the potential applicability of the anaerobic configuration for the biological treatment of sulfate-rich wastewaters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this research was to study the behavior of two anaerobic sequencing batch reactors, containing immobilized biomass (AnSBBR), as a function of the ratio of the volume of treated medium in each cycle to the total volume of reaction medium. The reactors, in which mixing was accomplished by recirculation of the liquid phase, were maintained at 30 +/- 1 degrees C and treated different wastewaters in 8-h cycles. The operational conditions imposed had the objective to investigate whether maintenance of a residual volume in the reactor would affect, at the end of each cycle, process efficiency and stability, as well as to verify the intensity of the effect for different types of wastewaters and organic loading rates. The first reactor, with work volume of 2.5 L, treated reconstituted cheese whey at an organic loading rate of 12 g COD.L(-1).d(-1) and presented similar effluent quality for the four conditions under which it was operated: renewal of 100, 70, 50 and 25 % of its work volume at each cycle. Despite the fact that reduction in the renewed volume did not significantly affect effluent quality, in quantitative terms, this reduction resulted in an increase in the amount of organic matter removed by the first reactor. The second reactor, with work volume of 1.8 L, treated synthetic wastewater at organic loading rates of 3 and 5 g COD.L(-1).d(-1) and operated under two conditions for each loading: renewal of 100 and 50 % of its work volume. At the organic loading rate of 3 g COD.L(-1).d(-1), the results showed that both effluent quality and amount of organic matter removed by the second reactor were independent of the treated volume per cycle. At the organic loading rate of 5 g COD.L(-1).d(-1), although the reduction in the renewed volume did not affect the amount of organic matter removed by the reactor, effluent quality improved during reactor operation with total discharge of its volume. In general, results showed process stability under all conditions, evidencing reactor flexibility and the potential to apply this technology in the treatment of different types of wastewater.
Resumo:
The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3) day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 + 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids, This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ Substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30 +/- 1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24 h of hydraulic retention time. The PCP concentrations, which ranged from 2.0 to 13.0 mg/L, were controlled by adding synthetic substrate. The HAIB reactor reduced 97% of COD and removed 99% of PCP. The microbial biofilm communities of the HAIB reactor amended with PCP, without previous acclimatization, were characterized by polymerase chain reaction (PCR) and amplified ribosomal DNA restriction analysis (ARDRA) with specific Archaea oligonucleotide primers. The ARDRA technique provided an adequate analysis of the community, revealing the profile of the selected population along the reactor. The biomass activities in the HAIB reactor at the end of the experiments indicated the development of PCP degraders and the maintenance of the population of methanogenic Archaea, ensuring the high efficiency of the system treating PCP with added methanol as the cosubstrate. The use of the simplified ARDRA method enabled us to monitor the microbial population with the addition of high concentrations of toxic compounds and highlighting a selection of microorganisms in the biofilm. (C) 2008 Published by Elsevier Ltd.