975 resultados para Biodiversity loss


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past 35 years, more than two thirds of the Cerrado`s original expanse has been taken by agriculture. Even if some attempts have been made to conserve closed cerrado physiognomies, open cerrado physiognomies, richer in species and more fragile, have been systematically ignored. These open physiognomies are used by almost half of the Cerrado bird species, many of which being endemics. Using data from 11 surveys carried out in Cerrado landscapes, we asked what would happen to bird functional diversity if open cerrado species became extinct. Open cerrado birds would be able to keep on average 59% of the functional diversity. If they became extinct, on average 27% of the functional diversity would be lost. In this case, the remaining functional diversity would be lower than what would be expected by chance in five sites. Although many functions were shared by both open cerrado and forest species, there was some degree of complementarity between them, highlighted by the decrease in functional diversity when the former became extinct. Destruction of open cerrado physiognomies would lead to a habitat simplification, decrease in bird functional diversity, and, ultimately, to a considerable impact on community functioning. Thus, open cerrado physiognomies must receive much more conservation attention than they are currently receiving, because they maintain a high bird functional diversity that would otherwise be considerably diminished Were open cerrado species to become extinct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytophthora cinnamomi continues to cause devastating disease in Australian native vegetation and consequently the disease is listed by the Federal Government as a process that is threatening Australia’s biodiversity. Although several advances have been made in our understanding of how this soil-borne pathogen interacts with plants and of how we may tackle it in natural systems, our ability to control the disease is limited. The pathogen occurs widely across Australia but the severity of its impact is most evident within ecological communities of the south-west and south-east of the country. A regional impact summary for all states and territories shows the pathogen to be the cause of serious disease in numerous species, a significant number of which are rare and threatened. Many genera of endemic taxa have a high proportion of susceptible species including the iconic genera Banksia, Epacris and Xanthorrhoea. Long-term studies in Victoria have shown limited but probably unsustainable recovery of susceptible vegetation, given current management practices. Management of the disease in conservation reserves is reliant on hygiene, the use of chemicals and restriction of access, and has had only limited effectiveness and not provided complete control. The deleterious impacts of the disease on faunal habitat are reasonably well documented and demonstrate loss of individual animal species and changes in population structure and species abundance. Few plant species are known to be resistant to P. cinnamomi; however, investigations over several years have discovered the mechanisms by which some plants are able to survive infection, including the activation of defence-related genes and signalling pathways, the reinforcement of cell walls and accumulation of toxic metabolites. Manipulation of resistance and resistance-related mechanisms may provide avenues for protection against disease in otherwise susceptible species. Despite the advances made in Phytophthora research in Australia during the past 40 years, there is still much to be done to give land managers the resources to combat this disease. Recent State and Federal initiatives offer the prospect of a growing and broader awareness of the disease and its associated impacts. However, awareness must be translated into action as time is running out for the large number of susceptible, and potentially susceptible, species within vulnerable Australian ecological communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoration works are carried out to alleviate human impacts and improve habitats within ecosystems. However, human impacts may also create new (anthropogenic) habitat for species to exploit.A dilemma arises when proposed restoration works would remove anthropogenic habitat and the assemblages it supports. Sediment input into the Glenelg River has formed tributary junction plug wetlands at confluences. Sand slug removal is proposed as part of river rehabilitation, but would also drain plug wetlands. We sampled four plug wetland, four river run and three river pool sites to determine whether plug wetlands influence water quality and add to the biodiversity of macroinvertebrates in the Glenelg River.Water quality and macroinvertebrate diversity were similar in plug wetlands, river runs and river pools.Assemblages were distinct among all sites, regardless of type, so there was no characteristic ‘plug-wetland fauna’. Therefore, although removal of plug wetlands would not cause a dramatic loss of invertebrate biodiversity, it would destroy anthropogenic habitat that supports a similar range of species to natural habitats in a river subject to multiple degrading processes. Gains from rehabilitation should be weighed against the value of anthropogenic habitat and the extent of similar habitat lost elsewhere in the ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Top-order predators often have positive effects on biological diversity owing to their key functional roles in regulating trophic cascades and other ecological processes. Their loss has been identified as a major factor contributing to the decline of biodiversity in both aquatic and terrestrial systems. Consequently, restoring and maintaining the ecological function of top predators is a critical global imperative. Here we review studies of the ecological effects of the dingo Canis lupus dingo, Australia's largest land predator, using this as a case study to explore the influence of a top predator on biodiversity at a continental scale. The dingo was introduced to Australia by people at least 3500 years ago and has an ambiguous status owing to its brief history on the continent, its adverse impacts on livestock production and its role as an ecosystem architect. A large body of research now indicates that dingoes regulate ecological cascades, particularly in arid Australia, and that the removal of dingoes results in an increase in the abundances and impacts of herbivores and invasive mesopredators, most notably the red fox Vulpes vulpes. The loss of dingoes has been linked to widespread losses of small and medium-sized native mammals, the depletion of plant biomass due to the effects of irrupting herbivore populations and increased predation rates by red foxes. We outline a suite of conceptual models to describe the effects of dingoes on vertebrate populations across different Australian environments. Finally, we discuss key issues that require consideration or warrant research before the ecological effects of dingoes can be incorporated formally into biodiversity conservation programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location Cloud forests in Mexico.
Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five.
Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas.
Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Globally, urbanization is one of the most widespread, intense and ecologically destructive forms of landscape transformation, and it is often concentrated in coastal areas. Theoretically, species losses attributable to urbanization are predicted not to alter overall ecosystem function if functional redundancy (i.e. replacement of function by alternative species) compensates for such losses. Here, we test this expectation by measuring how coastal urbanization affects scavenger guilds on sandy beaches and whether changes in guild composition result either in an overall loss of scavenging efficiency, or in functional compensation under alternative guild structures, maintaining net ecosystem functioning. Location: Fourteen beaches along the east coast of Australia with variable levels of urbanization. Methods: Scavenging communities and rates of carrion removal were determined using motion-triggered cameras at the beach-dune interface. Results: A substantial shift in the community structure of vertebrate scavengers was associated with gradients in urbanization. Iconic and functionally important raptors declined precipitously in abundance on urban beaches. Importantly, other vertebrates usually associated with urban settings (e.g. dogs, foxes, corvids) did not functionally replace raptors. In areas where < 15% of the abutting land had been developed into urban areas, carcass removal by scavengers was often complete, but always > 70%. Conversely, on beaches bordering coastal cities with < 40% of natural vegetation remaining, two-thirds of fish carcasses remained uneaten by scavengers. Raptors removed 70-100% of all deployed fish carcasses from beaches with < 8% urban land cover, but this number dropped significantly with greater levels of urbanization and was not compensated by other scavenger species in urban settings. Main conclusions: There is limited functional redundancy in vertebrate scavenger communities of sandy beach ecosystems, which impacts the system's capacity to mitigate the ecological consequences of detrimental landscape transformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preserving large tracts of natural habitats is essential to maintain biodiversity. Nevertheless, even large areas may still suffer from less visible impacts such as loss of ecological processes. Because mapping ecological processes over large scales is not practical, an alternative is to map surrogate species that are key for those processes. In this study, we chose four species of Neotropical large mammals (the largest apex predator: jaguar - Panthera onca; the largest herbivore: tapir - Tapirus terrestris; the largest seed predator: white-lipped peccary - Tayassu pecari; and the largest arboreal seed disperser: muriqui - Brachyteles spp.) in an ecosystem with an old history of human impact (the Atlantic Forest) to test whether areas with native forest still harbor ecological processes that may guarantee long-term ecosystem maintenance. We gathered 94 locations with recent presence of the four species to map current ranges and model suitable areas. Our results reveal that 96% of the remaining Atlantic Forest is depleted of at least one of the four surrogate species and 88% is completely depleted of all four surrogate species. We also found that only 16% is still environmentally suitable for all four, and 55% is completely unsuitable to all four of them. Our study highlights the importance of looking beyond land cover to fully depict intactness of natural areas, and suggests that ecosystems with a long history of human impact (such as the Atlantic Forest) may be suffering from ecological impacts not seen at a first glance. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species richness varies greatly across geographical regions. Eastern Arc Mountains (EAM) of Kenya and Tanzania is one of the global biodiversity hotspots. Despite this, high species diversity the explanatory factors have remained largely unexplored. Herein, this study first investigated amphibian species richness patterns in the EAM and particularly the reasons for the low richness in Taita Hills. It tested the hypothesis that the low richness is due to past forest loss or other factors. The results demonstrated that the regional species richness pattern was influenced largely by mean annual rainfall and not forest area. Secondly, using the 26 currently recorded amphibians in the Taita Hills, it investigated the relationship between amphibian species composition along anthropogenic habitat disturbance and elevation gradients. It tested the hypothesis that sites with similar environmental characteristics (temperature, rainfall and elevation), in close proximity and with similar disturbance levels (habitat types) harbour similar species composition. It was found that amphibian species composition differed in terms of elevation and was explained by both temperature and rainfall. Therefore sites with similar environmental characteristics, disturbance levels and in close proximity geographically have similar amphibian composition. Thirdly, diagnostic characters, distribution, basic life history characteristics and conservation status of all currently known amphibians in the Taita Hills were provided. Finally, first long term life history and ecological characteristics of a brevicipitid frog (Callulina sp) was provided. The results showed that this frog abundance and distribution is influenced mainly by mean monthly temperature, breeds during the long dry season and exhibit parental care. Results of this study strongly recommend increasing indigenous forest cover in order to enhance the conservation of the endemic indigenous forest associated amphibians such as Callulina sp, Boulengerula taitana and Boulengerula niedeni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8x25.8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often overlooked that more than half of all Recent spider species have abandoned web building or never developed such an adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. Hypotheses about the origin of the adhesive setae and their diversification throughout evolution are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper offers a principal-agent model of feasible private contracting in mitigation and conservation banking aimed at the protection of natural habitat and bio-diversity of US wetlands and uplands. It is shown that while it is straightforward to design an incentive contract, such a contract may not achieve the federally mandated objective of no net loss of habitat. This is because the minimum payment required as an economic incentive to private agents may be greater than what they should receive for the habitat values that they actually created in the field. This possible problem is shown to derive from nonconvexity in the production possibility set between the biological value of land as natural habitat and in non-habitat uses such as in urban development. The paper concludes with a consideration of several institutional devises that may promote the convergence of private contracting and the attainment of no net loss. These include the payment of subsidies, greater accuracy in the identification of actual quality by the principal, and the use of several incentive alignment devises.