818 resultados para Bibles for the blind.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
In the present study, to shed light on a role of positional error correction mechanism and prediction mechanism in the proactive control discovered earlier, we carried out a visual tracking experiment, in which the region where target was shown, was regulated in a circular orbit. Main results found in this research were following. Recognition of a time step, obtained from the environmental stimuli, is required for the predictive function. The period of the rhythm in the brain obtained from environmental stimuli is shortened about 10%, when the visual information is cut-off. The shortening of the period of the rhythm in the brain accelerates the motion as soon as the visual information is cut-off, and lets the hand motion precedes the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand precedes in average the target when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
Background: Although there are several studies that show the prevalence and diameter of accessory root canals in the furcation area, there is a scarceness of studies that observe the trajectory and different types of cavo-interradicular canals. The aim of this study was to verify the prevalence of the different morphologic types of accessory canals in the furcation region in an attempt to show their trajectories.Methods: Forty submerged mandibular third molars were used, which were extracted and decalcified so that the microtomy procedure in the mesio-distal axial plane could be performed, obtaining semiserial sections with thicknesses of 5 mu m. The sections were stained with hematoxylin and eosin and observed under optical microscopy.Results: All of the morphologic types were found, whereas the proper accessory canals, type-A canals, were present in 10% of the specimens. The most prevalent canals were the sealed ones (type D), with a prevalence of 87.5%, followed by the blind ones (type B), with a prevalence of 75%. The loop accessory canals (type C), observed in only 5% of the teeth, were the least prevalent ones.Conclusions: Different morphologic types of accessory canals were found in the furcation area of submerged mandibular molars. The histologic method was effective to show the canal trajectories.
Resumo:
The tactile cartography is an area of Cartography that aims the development of methodologies and didactical material to work cartographic concepts with blind and low vision people. The main aim of this article is to present the experience of Tactile Cartography Research Group from Sao Paulo State University (UNESP), including some didactical material and courses for teachers using the System MAPAVOX. The System MAPAVOX is software developed by our research group in a partnership with Federal University of Rio de Janeiro (UFRJ) that integrates maps and models with a voice synthesizer, sound emission, texts, images and video visualizing for computers. Our research methodology is based in authors that have in the students the centre of didactical activity such as Ochaita and Espinosa in [1], which developed studies related to blind children's literacy. According to Almeida the child's drawing is, thus, a system of representation. It isn't a copy of objects, but interpretation of that which is real, done by the child in graphic language[2]. In the proposed activities with blind and low vision students they are prepared to interpret reality and represent it by adopting concepts of graphic language learned. To start the cartographic initialization it is necessary to use personal and quotidian references, for example the classroom tactile model or map, to include concepts in generalization and scale concerning to their space of life. During these years many case studies were developed with blind and low vision students from Special School for Hearing Impaired and Visually Impaired in Araras and Rio Claro, Sao Paulo - Brazil. The most part of these experiences and others from Brazil and Chile are presented in [3]. Tactile material and MAPAVOX facilities are analysed by students and teachers who contribute with suggestions to reformulate and adapt them to their sensibility and necessity. Since 2005 we offer courses in Tactile Cartography to prepare teachers from elementary school in the manipulation of didactical material and attending students with special educational needs in regular classroom. There were 6 classroom and blended courses offered for 184 teachers from public schools in this region of the Sao Paulo state. As conclusion we can observe that methodological procedures centred in the blind and low vision students are successful in their spatial orientation if use didactical material from places or objects with which they have significant experience. During the applying of courses for teachers we could see that interdisciplinary groups can find creative cartographic alternatives more easily. We observed too that the best results in methodological procedures were those who provided concreteness to abstract concepts using daily experiences.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The blind river dolphin (Platanista gangetica), first written about by Pliny the Elder in A.D. 72, was found (10 November 1968) to be the first known side-swimming cetacean. The rudimentary eye lacks the lens, but anatomical evidence suggests that the eye may serve as a light sensor. The underwater sound emissions of this species, although similar to those of the Amazon River dolphin (Inia geoffrensis), appear to be produced constantly.
Resumo:
It is well known that constant-modulus-based algorithms present a large mean-square error for high-order quadrature amplitude modulation (QAM) signals, which may damage the switching to decision-directed-based algorithms. In this paper, we introduce a regional multimodulus algorithm for blind equalization of QAM signals that performs similar to the supervised normalized least-mean-squares (NLMS) algorithm, independently of the QAM order. We find a theoretical relation between the coefficient vector of the proposed algorithm and the Wiener solution and also provide theoretical models for the steady-state excess mean-square error in a nonstationary environment. The proposed algorithm in conjunction with strategies to speed up its convergence and to avoid divergence can bypass the switching mechanism between the blind mode and the decision-directed mode. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Previous research has revealed that a stimulus presented in the blind visual field of participants with visual hemifield defects can evoke oculomotor competition, in the absence of awareness. Here we studied three cases to determine whether a distractor in a blind hemifield would be capable of inducing a global effect, a shift of saccade endpoint when target and distractor are close to each other, in participants with lesions of the optic radiations or striate cortex. We found that blind field distractors significantly shifted saccadic endpoints in two of three participants with lesions of either the striate cortex or distal optic radiations. The direction of the effect was paradoxical, however, in that saccadic endpoints shifted away from blind field distractors, whereas endpoints shifted towards distractors in the visible hemifields, which is the normal global effect. These results provide further evidence that elements presented in the blind visual field can generate modulatory interactions in the oculomotor system, which may differ from interactions in normal vision.
Resumo:
BACKGROUND: Ilioinguinal and iliohypogastric nerve blocks may be used in the diagnosis of chronic groin pain or for analgesia for hernia repair. This study describes a new ultrasound-guided approach to these nerves and determines its accuracy using anatomical dissection control. METHODS: After having tested the new method in a pilot cadaver, 10 additional embalmed cadavers were used to perform 37 ultrasound-guided blocks of the ilioinguinal and iliohypogastric nerve. After injection of 0.1 ml of dye the cadavers were dissected to evaluate needle position and colouring of the nerves. RESULTS: Thirty-three of the thirty-seven needle tips were located at the exact target point, in or directly at the ilioinguinal or iliohypogastric nerve. In all these cases the targeted nerve was coloured entirely. In two of the remaining four cases parts of the nerves were coloured. This corresponds to a simulated block success rate of 95%. In contrast to the standard 'blind' techniques of inguinal nerve blocks we visualized and targeted the nerves 5 cm cranial and posterior to the anterior superior iliac spine. The median diameters of the nerves measured by ultrasound were: ilioinguinal 3.0x1.6 mm, and iliohypogastric 2.9x1.6 mm. The median distance of the ilioinguinal nerve to the iliac bone was 6.0 mm and the distance between the two nerves was 10.4 mm. CONCLUSIONS: The anatomical dissections confirmed that our new ultrasound-guided approach to the ilioinguinal and iliohypogastric nerve is accurate. Ultrasound could become an attractive alternative to the 'blind' standard techniques of ilioinguinal and iliohypogastric nerve block in pain medicine and anaesthetic practice.
Resumo:
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish A¨ spo¨ Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2 +, 47Ca2 +and more strongly sorbing 86Rb+, 133Ba2 +, 137Cs+. Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.
Resumo:
In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.
Resumo:
Blind Deconvolution consists in the estimation of a sharp image and a blur kernel from an observed blurry image. Because the blur model admits several solutions it is necessary to devise an image prior that favors the true blur kernel and sharp image. Many successful image priors enforce the sparsity of the sharp image gradients. Ideally the L0 “norm” is the best choice for promoting sparsity, but because it is computationally intractable, some methods have used a logarithmic approximation. In this work we also study a logarithmic image prior. We show empirically how well the prior suits the blind deconvolution problem. Our analysis confirms experimentally the hypothesis that a prior should not necessarily model natural image statistics to correctly estimate the blur kernel. Furthermore, we show that a simple Maximum a Posteriori formulation is enough to achieve state of the art results. To minimize such formulation we devise two iterative minimization algorithms that cope with the non-convexity of the logarithmic prior: one obtained via the primal-dual approach and one via majorization-minimization.
Resumo:
In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is presented. Processing was performed without a priori knowledge of the chemical composition of the two food materials. The aim was to extract the source signals of the different chemical components from the initial data set and to use them in order to determine the distribution of peanut traces in the hyperspectral images. To determine the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This method is based on the repeated calculation of several models using an increasing number of independent components after randomly segmenting the matrix data into two blocks and then calculating the correlations between the signals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single synthetic signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and the wheat flours in a real multi-use industrial environment. Furthermore, feature extraction methods (connected components labelling algorithm followed by flood fill method to extract object contours) were applied in order to target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces was thus obtained
Resumo:
When the visual (striate) cortex (V1) is damaged in human subjects, cortical blindness results in the contralateral visual half field. Nevertheless, under some experimental conditions, subjects demonstrate a capacity to make visual discriminations in the blind hemifield (blindsight), even though they have no phenomenal experience of seeing. This capacity must, therefore, be mediated by parallel projections to other brain areas. It is also the case that some subjects have conscious residual vision in response to fast moving stimuli or sudden changes in light flux level presented to the blind hemifield, characterized by a contentless kind of awareness, a feeling of something happening, albeit not normal seeing. The relationship between these two modes of discrimination has never been studied systematically. We examine, in the same experiment, both the unconscious discrimination and the conscious visual awareness of moving stimuli in a subject with unilateral damage to V1. The results demonstrate an excellent capacity to discriminate motion direction and orientation in the absence of acknowledged perceptual awareness. Discrimination of the stimulus parameters for acknowledged awareness apparently follows a different functional relationship with respect to stimulus speed, displacement, and stimulus contrast. As performance in the two modes can be quantitatively matched, the findings suggest that it should be possible to image brain activity and to identify the active areas involved in the same subject performing the same discrimination task, both with and without conscious awareness, and hence to determine whether any structures contribute uniquely to conscious perception.
Resumo:
Includes indexes.