195 resultados para Bernoulli


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light-frame wood buildings are widely built in the United States (U.S.). Natural hazards cause huge losses to light-frame wood construction. This study proposes methodologies and a framework to evaluate the performance and risk of light-frame wood construction. Performance-based engineering (PBE) aims to ensure that a building achieves the desired performance objectives when subjected to hazard loads. In this study, the collapse risk of a typical one-story light-frame wood building is determined using the Incremental Dynamic Analysis method. The collapse risks of buildings at four sites in the Eastern, Western, and Central regions of U.S. are evaluated. Various sources of uncertainties are considered in the collapse risk assessment so that the influence of uncertainties on the collapse risk of lightframe wood construction is evaluated. The collapse risks of the same building subjected to maximum considered earthquakes at different seismic zones are found to be non-uniform. In certain areas in the U.S., the snow accumulation is significant and causes huge economic losses and threatens life safety. Limited study has been performed to investigate the snow hazard when combined with a seismic hazard. A Filtered Poisson Process (FPP) model is developed in this study, overcoming the shortcomings of the typically used Bernoulli model. The FPP model is validated by comparing the simulation results to weather records obtained from the National Climatic Data Center. The FPP model is applied in the proposed framework to assess the risk of a light-frame wood building subjected to combined snow and earthquake loads. The snow accumulation has a significant influence on the seismic losses of the building. The Bernoulli snow model underestimates the seismic loss of buildings in areas with snow accumulation. An object-oriented framework is proposed in this study to performrisk assessment for lightframe wood construction. For home owners and stake holders, risks in terms of economic losses is much easier to understand than engineering parameters (e.g., inter story drift). The proposed framework is used in two applications. One is to assess the loss of the building subjected to mainshock-aftershock sequences. Aftershock and downtime costs are found to be important factors in the assessment of seismic losses. The framework is also applied to a wood building in the state of Washington to assess the loss of the building subjected to combined earthquake and snow loads. The proposed framework is proven to be an appropriate tool for risk assessment of buildings subjected to multiple hazards. Limitations and future works are also identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The St. Petersburg Paradox was first presented by Nicholas Bernoulli in 1713. It is related to a gambling game whose mathematical expected payoff is infinite, but no reasonable person would pay more than $25 to play it. In the history, a number of ideas in different areas have been developed to solve this paradox, and this report will mainly focus on mathematical perspective of this paradox. Different ideas and papers will be reviewed, including both classical ones of 18th and 19th century and some latest developments. Each model will be evaluated by simulation using Mathematica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voting power is commonly measured using a probability. But what kind of probability is this? Is it a degree of belief or an objective chance or some other sort of probability? The aim of this paper is to answer this question. The answer depends on the use to which a measure of voting power is put. Some objectivist interpretations of probabilities are appropriate when we employ such a measure for descriptive purposes. By contrast, when voting power is used to normatively assess voting rules, the probabilities are best understood as classical probabilities, which count possibilities. This is so because, from a normative stance, voting power is most plausibly taken to concern rights and thus possibilities. The classical interpretation also underwrites the use of the Bernoulli model upon which the Penrose/Banzhaf measure is based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let Y be a stochastic process on [0,1] satisfying dY(t)=n 1/2 f(t)dt+dW(t) , where n≥1 is a given scale parameter (`sample size'), W is standard Brownian motion and f is an unknown function. Utilizing suitable multiscale tests, we construct confidence bands for f with guaranteed given coverage probability, assuming that f is isotonic or convex. These confidence bands are computationally feasible and shown to be asymptotically sharp optimal in an appropriate sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Carl Gustav Bernoulli

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary interest was in predicting the distribution runs in a sequence of Bernoulli trials. Difference equation techniques were used to express the number of runs of a given length k in n trials under three assumptions (1) no runs of length greater than k, (2) no runs of length less than k, (3) no other assumptions about the length of runs. Generating functions were utilized to obtain the distributions of the future number of runs, future number of minimum run lengths and future number of the maximum run lengths unconditional on the number of successes and failures in the Bernoulli sequence. When applying the model to Texas hydrology data, the model provided an adequate fit for the data in eight of the ten regions. Suggested health applications of this approach to run theory are provided. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite almost 40 years of research into the etiology of Kawasaki Syndrome (KS), there is little research published on spatial and temporal clustering of KS cases. Previous analysis has found significant spatial and temporal clustering of cases, therefore cluster analyses were performed to substantiate these findings and provide insight into incident KS cases discharged from a pediatric tertiary care hospital. Identifying clusters from a single institution would allow for prospective analysis of risk factors and potential exposures for further insight into KS etiology. ^ Methods: A retrospective study was carried out to examine the epidemiology and distribution of patients presenting to Texas Children’s Hospital in Houston, Texas, with a diagnosis of Acute Febrile Mucocutaneous Lymph Node Syndrome (MCLS) upon discharge from January 1, 2005 to December 31, 2009. Spatial, temporal, and space-time cluster analyses were performed using the Bernoulli model with case and control event data. ^ Results: 397 of 102,761 total patients admitted to Texas Children’s Hospital had a principal or secondary diagnosis of Acute Febrile MCLS upon over the 5 year period. Demographic data for KS cases remained consistent with known disease epidemiology. Spatial, temporal, and space-time analyses of clustering using the Bernoulli model demonstrated no statistically significant clusters. ^ Discussion: Despite previous findings of spatial-temporal clustering of KS cases, there were no significant clusters of KS cases discharged from a single institution. This implicates the need for an expanded approach to conducting spatial-temporal cluster analysis and KS surveillance given the limitations of evaluating data from a single institution.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep sea drilling on four seamounts in the Emperor Seamount chain revealed that Paleogene shallow-water carbonate sediments of the "bryozoan-algal" facies crown the basalt edifices. According to the biofacies model of Schlanger and Konishi (1966, 1975), this bryozoan- algal assemblage suggests that the seamounts formed in cooler, more northerly waters than those presently occupied by the island of Hawaii; i.e., the paleolatitudes of formation were greater than 20 °N. Moving southward toward the youngest member of the seamount chain, a facies gradient indicative of warmer waters was observed. This gradient is interpreted as a reflection of a northward shift in isotherms during the time span in which the seamounts were progressively formed (Savin et al., 1975). On all seamounts, sedimentation at the drilling sites occurred in a high-energy environment with water depths of approximately 20 meters. Early-stage carbonate diagenesis began in the phreatic zone in the presence of meteoric water, but proceeded after subsidence of the seamounts into intermediate sea waters, where the bulk, stable isotopic composition was determined. The subsidence into intermediate waters was rapid, and permitted establishment of an isotopic equilibrium which, like the facies gradient, reflects the northward shift in isotherms during the Paleogene. Calcite and zeolite cements comprise the later-stage diagenesis, and originated from solutions arising from the hydrolysis of the underlying basalt. In conclusion, the results of this study of the shallow-water carbonate sediments are not inconsistent with a paleolatitude of formation for Suiko Seamount (Site 433) of 26.9 ±3.5 °N, as determined by paleomagnetic measurements (Kono, 1980).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este Diccionario Biográfico de Matemáticos incluye más de 2040 reseñas de matemáticos, entre las que hay unas 280 de españoles y 36 de mujeres (Agnesi, Blum, Byron, Friedman, Hipatia, Robinson, Scott, etc.), de las que 11 son españolas (Casamayor, Sánchez Naranjo, Sanz-Solé, etc.). Se ha obtenido la mayor parte de las informaciones por medio de los libros recogidos en el apéndice “Bibliografía consultada”; otra parte, de determinadas obras matemáticas de los autores reseñados (estas obras no están incluidas en el citado apéndice, lo están en las correspondientes reseñas de sus autores). Las obras más consultadas han sido las de Boyer, Cajori, Kline, Martinón, Peralta, Rey Pastor y Babini, Wieleitner, las Enciclopedias Espasa, Británica, Larousse, Universalis y Wikipedia. Entre las reseñas incluidas, destacan las siguientes, en orden alfabético: Al-Khuwairizmi, Apolonio, Arquímedes, Jacob y Johann Bernoulli, Brouwer, Cantor, Cauchy, Cayley, Descartes, Diofanto, Euclides, Euler, Fermat, Fourier, Galileo, Gauss, Hilbert, Lagrange, Laplace, Leibniz, Monge, Newton, Pappus, Pascal, Pitágoras, Poincaré, Ptolomeo, Riemann, Weierstrass, etc. Entre los matemáticos españoles destacan las de Echegaray, Etayo, Puig Adam, Rey Pastor, Reyes Prósper, Terradas (de quien Einstein dijo: “Es uno de los seis primeros cerebros mundiales de su tiempo y uno de los pocos que pueden comprender hoy en día la teoría de la relatividad”), Torre Argaiz, Torres Quevedo, los Torroja, Tosca, etc. Se han incluido varias referencias de matemáticos nacidos en la segunda mitad del siglo XX. Entre ellos descuellan nombres como Perelmán o Wiles. Pero para la mayor parte de ellos sería conveniente un mayor distanciamiento en el tiempo para poder dar una opinión más objetiva sobre su obra. Las reseñas no son exhaustivas. Si a algún lector le interesa profundizar en la obra de un determinado matemático, puede utilizar con provecho la bibliografía incluida, o también las obras recogidas en su reseña. En cada reseña se ha seguido la secuencia: nombre, fechas de nacimiento y muerte, profesión, nacionalidad, breve bosquejo de su vida y exposición de su obra. En algunos casos, pocos, no se ha podido encontrar el nombre completo. Cuando sólo existe el año de nacimiento, se indica con la abreviatura “n.”, y si sólo se conoce el año de la muerte, con la abreviatura “m.”. Si las fechas de nacimiento y muerte son sólo aproximadas, se utiliza la abreviatura “h.” –hacia–, abreviatura que también se utiliza cuando sólo se conoce que vivió en una determinada época. Esta utilización es, entonces, similar a la abreviatura clásica “fl.” –floreció–. En algunos casos no se ha podido incluir el lugar de nacimiento del personaje o su nacionalidad. No todos los personajes son matemáticos en sentido estricto, aunque todos ellos han realizado importantes trabajos de índole matemática. Los hay astrónomos como, por ejemplo, Brahe, Copérnico, Laplace; físicos como Dirac, Einstein, Palacios; ingenieros como La Cierva, Shannon, Stoker, Torres Quevedo (muchos matemáticos, considerados primordialmente como tales, se formaron como ingenieros, como Abel Transon, Bombelli, Cauchy, Poincaré); geólogos, cristalógrafos y mineralogistas como Barlow, Buerger, Fedorov; médicos y fisiólogos como Budan, Cardano, Helmholtz, Recorde; naturalistas y biólogos como Bertalanfly, Buffon, Candolle; anatomistas y biomecánicos como Dempster, Seluyanov; economistas como Black, Scholes; estadísticos como Akaike, Fisher; meteorólogos y climatólogos como Budyko, Richardson; filósofos como Platón, Aristóteles, Kant; religiosos y teólogos como Berkeley, Santo Tomás; historiadores como Cajori, Eneström; lingüistas como Chomsky, Grassmann; psicólogos y pedagogos como Brousseau, Fishbeim, Piaget; lógicos como Boole, Robinson; abogados y juristas como Averroes, Fantet, Schweikart; escritores como Aristófanes, Torres de Villarroel, Voltaire; arquitectos como Le Corbusier, Moneo, Utzon; pintores como Durero, Escher, Leonardo da Vinci (pintor, arquitecto, científico, ingeniero, escritor, lingüista, botánico, zoólogo, anatomista, geólogo, músico, escultor, inventor, ¿qué es lo que 6 no fue?); compositores y musicólogos como Gugler, Rameau; políticos como Alfonso X, los Banu Musa, los Médicis; militares y marinos como Alcalá Galiano, Carnot, Ibáñez, Jonquières, Poncelet, Ulloa; autodidactos como Fermat, Simpson; con oficios diversos como Alcega (sastre), Argand (contable), Bosse (grabador), Bürgi (relojero), Dase (calculista), Jamnitzer (orfebre), Richter (instrumentista), etc. También hay personajes de ficción como Sancho Panza (siendo gobernador de la ínsula Barataria, se le planteó a Sancho una paradoja que podría haber sido formulada por Lewis Carroll; para resolverla, Sancho aplicó su sentido de la bondad) y Timeo (Timeo de Locri, interlocutor principal de Platón en el diálogo Timeo). Se ha incluido en un apéndice una extensa “Tabla Cronológica”, donde en columnas contiguas están todos los matemáticos del Diccionario, las principales obras matemáticas (lo que puede representar un esbozo de la historia de la evolución da las matemáticas) y los principales acontecimientos históricos que sirven para situar la época en que aquéllos vivieron y éstas se publicaron. Cada matemático se sitúa en el año de su nacimiento, exacto o aproximado; si no se dispone de este dato, en el año de su muerte, exacto o aproximado; si no se dispone de ninguna de estas fechas, en el año aproximado de su florecimiento. Si sólo se dispone de un periodo de tiempo más o menos concreto, el personaje se clasifica en el año más representativo de dicho periodo: por ejemplo, en el año 250 si se sabe que vivió en el siglo III, o en el año -300 si se sabe que vivió hacia los siglos III y IV a.C. En el apéndice “Algunos de los problemas y conjeturas expuestos en el cuerpo del Diccionario”, se ha resumido la situación actual de algunos de dichos problemas y conjeturas. También se han incluido los problemas que Hilbert planteó en 1900, los expuestos por Smale en 1997, y los llamados “problemas del milenio” (2000). No se estudian con detalle, sólo se indica someramente de qué tratan. Esta segunda edición del Diccionario Biográfico de Matemáticos tiene por objeto su puesta a disposición de la Escuela de Ingenieros de Minas de la Universidad Politécnica de Madrid.