968 resultados para Belt conveyors
Mapeamento geológico no alvo Morro do Corcunda - Greenstone Belt Pilar de Goiás (Santa Terezinha-GO)
Resumo:
The following work refers to a geologic mapping in the Morro do Corcunda target, located between the cities of Pilar of Goiás and Santa Terezinha in the northwest portion of the State of Goiás. This mapping was carried through in 1:10,000 scale and covers an area of approximately 60km2. Collections of samples had been carried through for laborarorial analysis, and from those twenty-three thin scetions have been produced in order to describe the main lithologies that occur in the area. It was possible to observe anomalous gold targets in the region through chip samples carried through during the stage of field work. The gathered field data and the ones that have been made available by the company Yamana Gold Incorporation were congregated, and a data integration was carried through. This integration made possible the correlation of the litologies found in field with the Greenstone Belt Pilar de Goiás sequence and the structural evolution of the area.
Resumo:
The study area is included in the geological context of the Goias Median Massif, a region where there are associations of Archean granite-gneiss complex (Block Moquém) and a Paleoproterozoic metavolcano-sedimentary sequence ( Pilar greenstone belt ). At the south of area, the greenstone sequence is partially overlain by Neopreoterozoic metasediments of the Araxá Group. The lithostratigraphic units of the Pilar greenstone belt define a shift from about N30W direction (north of the deposit) to N60 and 70W in the region south of the Jordino deposit, where are truncated by the Araxá Group rocks. Mineralogical associations described in this paper allow to indicate that the regional metamorphism that affected the rocks of the greenstone belt and Araxá Group, in the mapped area, reached the upper greenschist facies (garnet zone). Data obtained during mapping and by microtectonics analysis allow to indicate the existence of at least four deformational events that acted on the rocks of the Guarinos greenstone belt and Araxá Group, represented by the phases called Dn-1, Dn, Dn + 1 and Dn+2. It was observed that the pattern of sulphide porfitoblasts in mineralized levels is similar to garnet, biotite and muscovite porfiroblasts (tardi to post Dn) that marks the metamorphic peak of the area
Resumo:
This work aims to present the design and development of a speed reducer worm gear that will be implemented on an inclined treadmill that aims to raise the load below the top floor. The project start was made with research on issues related to mechanisms and machine elements, and these theories of fundamental importance in the development of device components, along with the help of SolidWorks software that was used to model the main parts of the project and Microsoft Office Excel 2007 was used to alight formulas to perform calculations of the project. All data for calculations were taken from the conditions of the problem to be solved in the best possible way the proposed problem (lifting load from the belt). Following the entire sequence of design gearbox assembly, beginning in pre-sizing and endless selection of electric motor, which consists of an iterative project, then scaling the worm gear and crown, shafts, splines, calculation and bearing selection
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Maize demand for food, livestock feed, and biofuel is expected to increase substantially. The Western U.S. Corn Belt accounts for 23% of U.S. maize production, and irrigated maize accounts for 43 and 58% of maize land area and total production, respectively, in this region. The most sensitive parameters (yield potential [YP], water-limited yield potential [YP-W], yield gap between actual yield and YP, and resource-use efficiency) governing performance of maize systems in the region are lacking. A simulation model was used to quantify YP under irrigated and rainfed conditions based on weather data, soil properties, and crop management at 18 locations. In a separate study, 5-year soil water data measured in central Nebraska were used to analyze soil water recharge during the non-growing season because soil water content at sowing is a critical component of water supply available for summer crops. On-farm data, including yield, irrigation, and nitrogen (N) rate for 777 field-years, was used to quantify size of yield gaps and evaluate resource-use efficiency. Simulated average YP and YP-W were 14.4 and 8.3 Mg ha-1, respectively. Geospatial variation of YP was associated with solar radiation and temperature during post-anthesis phase while variation in water-limited yield was linked to the longitudinal variation in seasonal rainfall and evaporative demand. Analysis of soil water recharge indicates that 80% of variation in soil water content at sowing can be explained by precipitation during non-growing season and residual soil water at end of previous growing season. A linear relationship between YP-W and water supply (slope: 19.3 kg ha-1 mm-1; x-intercept: 100 mm) can be used as a benchmark to diagnose and improve farmer’s water productivity (WP; kg grain per unit of water supply). Evaluation of data from farmer’s fields provides proof-of-concept and helps identify management constraints to high levels of productivity and resource-use efficiency. On average, actual yields of irrigated maize systems were 11% below YP. WP and N-fertilizer use efficiency (NUE) were high despite application of large amounts of irrigation water and N fertilizer (14 kg grain mm-1 water supply and 71 kg grain kg-1 N fertilizer). While there is limited scope for substantial increases in actual average yields, WP and NUE can be further increased by: (1) switching surface to pivot systems, (2) using conservation instead of conventional tillage systems in soybean-maize rotations, (3) implementation of irrigation schedules based on crop water requirements, and (4) better N fertilizer management.
Resumo:
High-grade metasedimentary rocks can preserve geochemical signatures of their sedimentary protolith if significant melt extraction did not occur. Retrograde reaction textures provide the main evidence for trapped melt in the rock fabrics. Carvalhos Klippe rocks in Southern Brasilia Orogen, Brazil, present a typical high-pressure granulite assemblage with evidence of mica breakdown partial melting (Ky + Grt + Kfs +/- Bt +/- Rt). The metamorphic peak temperatures obtained by Zr-in-Rt and ternary feldspar geothermometers are between 850 degrees C and 900 degrees C. The GASP bane peak pressure obtained using grossular rich garnet core is 16 kbar. Retrograde reaction textures in which the garnet crystals are partially to totally replaced by Bt + Qtz +/- Fsp intergrowths are very common in the Carvalhos Klippe rocks. These reactions are interpreted as a result of interactions between residual phases and trapped melt during the retrograde path. In the present study the geochemical signatures of three groups of Carvalhos Klippe metasedimentary rocks are analysed. Despite the high metamorphic grade these three groups show well-defined geochemical features and their REE patterns are similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). The high-pressure granulite facies Grt-Bt-Pl gneisses with immature arenite (wacke, arkose or lithic-arenite) geochemical signatures present in the Carvalhos Klippe are compared to similar rocks in amphibolite facies from the same tectonic framework (Andrelandia Nappe System). The similar geochemical signatures between Grt-Bt-Pl gneisses metamorphosed in high-pressure granulite facies and Grt-Bt-Pl-Qtz schists from the Andrelandia and Liberdade Nappes, with minimal to absent melting conditions, are suggestive of low rates of melt extraction in these high-grade rocks. The rocks with pelitic compositions most likely had higher melt extraction and even under such circumstances nevertheless tend to show REE patterns similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The early phase of post-collisional granitic magmatism in the Camboriu region, south Brazil, is represented by the porphyritic biotite +/- hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (similar to 610 Ma), equigranular, biotite +/- muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriu Complex, as indicated by strongly negative epsilon Nd-t (-23 to -24) and unradiogenic Pb (e.g., Pb-206/Pb-204 = 16.0-16.3; Pb-207/Pb-204 = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative epsilon Nd-t (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriu Complex. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Paraguay Belt in central South America is part of a larger chain of orogenic belts, including the Araguaia Belt to the northeast and potentially the Pampean Belt to the south, which are believed to mark the suture zone of the Clymene Ocean - interpreted amongst the youngest of the Gondwana amalgamation orogens. The post-orogenic Sao Vicente Granite crops out in the northern Paraguay Belt and cuts the basal unit of the deformed and metamorphosed Cuiaba Group. The age of this granite therefore provides a long sort after minimum age for orogenesis within the belt. Dating crystallisation of this important intrusion is challenging due to the presence of considerable common-Pb. However, based on LA-ICPMS dating of more than 100 zircons from three separate samples we interpret a robust crystallisation age for the Sao Vicente batholith at 518 +/- 4 Ma. This age constrains the termination of deformation within the Paraguay Belt and the final accretion of the supercontinent Gondwana. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based fades analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These fades are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 +/- 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of westem Gondwana in the earliest Phanerozoic. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Glacigenic diamictite successions of the Macaubas Group are widespread in the western domain of the Aracuai orogen, east of the Sao Francisco craton (Brazil). Diamictites also occur on this craton and in the African counterpart of the Aracuai orogen, the West Congo belt. Detrital zircon grains from the matrix of diamictites and sandstones from the Macaubas Group were dated by the U-Pb SHRIMP technique. The geochronological study sets the maximum depositional age of the glacial diamictites at 900 Ma, and indicates multiple sources for the Macaubas basin with ages ranging from 900 to 2800 Ma. Sm-Nd T-DM model ages, determined on whole rock samples, range from 1.8 Ga to 2.5 Ga and get older up-section. Comparison of our data with those from the cratonic area suggest that these glacial deposits can be correlated to the Jequitai and Carrancas diamictites in the Sao Francisco craton, and to the Lower Mixtite Formation of the West Congolian Group, exposed in Africa. The 900-1000 Ma source is most probably represented by the Zadinian-Mayumbian volcanic rocks and related granites from the West Congo belt. However, one of the most voluminous sources, with ages in the 1.1-1.3 Ga interval, has not been detected in the Sao Francisco-Congo craton. Possible sources for these grains could occur elsewhere in Africa, or possibly from within the Brasilia Belt in western central Brazil. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
New geochronological and geochemical constraints on Precambrian sedimentary and volcanic successions exposed in the western part of the Central Domain of the Borborema Province, NE Brazil, indicate the presence of two distinct tectono-stratigraphic complexes: Riacho Gravata and Sao Caetano. Both complexes and associated orthogneisses are referred in the literature as the Cariris Velhos belt, having depositional, extrusive, or intrusive ages within the interval 985-913 Ma. The Riacho Gravata complex consists of bimodal (but mostly felsic) volcanic and volcanoclastic rocks, muscovite+/-graphite schists, quartzites, and marble with local occurrences of banded-iron-formation. The Sao Caetano complex mainly consists of metagreywackes, marbles, calc-silicate rocks, and rare meta-mafic rocks. Meta-mafic rocks from both complexes have geochemical signatures similar to those of continental flood basalts, with epsilon Nd (1.0 Ga) values ranging from -1.0 to -2.8. Felsic volcanic rocks from the Riacho Gravata complex show epsilon Nd (1.0 Ga) values ranging from -1.0 to -7.4 and geochemical signatures similar to A(2)-type granitoids. New SHRIMP U-Pb zircon data from felsic volcanic rocks within the Riacho Gravata complex yielded ages of 1091 +/- 13 Ma and 996 +/- 13 Ma. In contrast, meta-graywackes from the Sao Caetano complex show a maximum deposition age of ca. 806 Ma in the northern part and ca. 862 Ma in the southern part of the outcrop area. The orthogneisses show epsilon Nd (1.0 Ga) values ranging from 1.0 to -4.2 with U/Pb TIMS and SHRIMP ages ranging from 960 to 926 Ma and geochemical signatures of A(2)-type granitoids. The data reported in this paper suggest at least two periods of extension within the Central Domain of the Borborema Province, the first starts ca. 1091 Ma with magmatism and deposition, creating the Riacho Gravata basin and continued intrusion of A-type granites to 920 Ma. A second rift event, which reactivated old faults, generated a basin with a maximum deposition age of ca. 806 Ma. Furthermore, the oldest granitoids cutting these metasedimentary rocks have crystallization ages of ca. 600 Ma. This suggests that the second rift event could be early Brasiliano in age. The resulting Sao Caetano basin received detritus from a variety of sources, although detritus from the Riacho Gravata complex dominated. Deposition ages of the Riacho Gravata and the Sao Caetano complexes are coeval with deposits in other basins of the Borborema Province (Riacho do Tigre in the Central Domain; Macurure and Maranco in the Sergipano Belt of the Southern domain). The Macaubas Group from SE Brazil and its counterparts in Africa, the Zadanian and Mayumbian Groups, in the western edge of the Congo Craton are also coeval. Closure of the Riacho Gravata and Sao Caetano basins occurred during the Brasiliano convergence (705-600 Ma). During the last stage of convergence, ca. 612 Ma, pull-apart basins were created and filled; final basin closure took place 605-592 Ma, after deposition ceased. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Apiai gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10(-2) SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P >= 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P <= 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiai gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.
Resumo:
Strukturgeologische Untersuchungen belegen, daß die Anatoliden der Westtürkei im Eozän durch die Plazierung der Kykladischen Blauschiefereinheit entlang einer durchbrechenden Überschiebung auf die Menderes-Decken unter grünschieferfaziellen Metamorphosebedingungen entstanden.Die kykladischen Blauschiefer in der Westtürkei enthalten Relikte eines prograden alpinen Gefüges (DA1), welches hochruckmetamorph von Disthen und Chloritoid poikiloblastisch überwachsen wurde. Dieses Mineralstadium dauerte noch während des Beginns des nachfolgenden Deformationsereignisses (DA2) an, welches durch NE-gerichtete Scherung und Dekompression charakterisiert ist. Die nachfolgende Deformation (DA3) war das erste Ereignis, das beide Einheiten, sowohl die kykladische Blauschifereinheit als auch die Menderes-Decken, gemeinsam erfaßte. Der Überschiebungskontakt zwischen der kykladischen Blauschiefereinheit und den Menderes-Decken ist eine DA3-Scherzone: die Cycladic-Menderes Thrust (CMT). Entlang der CMT-Überschiebungsbahn wurden die kykladischen Blauschiefer gegen veschiedene Einheiten der MN plaziert. Die CMT steigt nach S zum strukturell Hangenden hin an und kann daher als eine durchbrechende Überschiebung entlang einer nach S ansteigenden Rampe betrachtet werden. In den kykladischen Blauschiefern überprägen DA3-Strukturen, die im Zusammenhang mit der CMT stehen, hochdruckmentamorphe Gefüge.In den Menderes-Decken, dem Liegenden der CMT, wird DA3 durch regional vebreitete Gefügeelemente dokumentiert, die im Zusammenhang mit S-gerichteten Schersinnindikatoren stehen. DA3-Gefüge haben die Decken intern deformiert und bilden jene Scherzonen, welche die Decken untereinander abgrenzen. In der Çine-Decke können granitische Gesteine in Orthogneise und Metagranite unterteilt werden. Die Deformationsgeschichte dieser Gesteine dokumentiert zwei Ereignisse. Ein frühes amphibolitfazielles Ereignis erfaßte nur die Orthogneise, in denen vorwiegend NE-SW orientierte Lineare und NE-gerichtete Schersinnindikatoren entstanden. Die jüngeren Metagranite wurden sowohl durch vereinzelte DA3-Scherzonen, als auch in einer großmaßstäblichen DA3-Scherzone am Südrand des Çine-Massivs deformiert. In DA3-Scherzonen sind die Lineare N-S orientiert und die zugehörigen Schersinnindikatoren zeigen S-gerichtete Scherung unter grünschieferfaziellen Bedingungen an. Diese grünschieferfaziellen Scherzonen überprägen die amphibolitfaziellen Gefüge in den Orthogneisen. Magmatische Zirkone aus einem Metagranit, der einen Orthogneiss mit Top-NE Gefügen durchschlägt, ergaben ein 207Pb/206Pb-Alter von 547,2±1,0 Ma. Dies deutet darauf hin, daß DPA proterozoischen Alters ist. Dies wird auch durch die Tatsache gestützt, daß triassische Granite in der Çine- und der Bozdag-Decke keine DPA-Gefüge zeigen. Die jüngeren Top-S-Gefüge sind wahrscheinlich zur gleichen Zeit entstanden wie die ältesten Gefüge der Bayindir-Decke.Das Fehlen von Hochdruck-Gefügen im Liegenden der CMT impliziert eine Exhumierung der kykladischen Blauschiefer von mehr ca. 35 km, bevor diese im Eozän auf die Menderes-Decken aufgeschoben wurden. Die substantiellen Unterschiede bezüglich in der tektonometamorphen Geschichte der kykladischen Blauschiefer und der Menderes-Decken widersprechen der Modellvorstellung eines lateral kontinuierlichen Orogengürtels, nach der die Menderes-Decken als östliche Fortsezung der kykladischen Blauschiefer angesehen werden.Die Analyse spröder spätalpiner Deformationsstrukturen und das regionale Muster mit Hilfe von Spaltspurdatierung modellierter Abkühlalter deuten darauf hin, daß die Struktur des Eozänen Deckenstapels durch miozäne bis rezente Kernkomplex-Bildung stark modifiziert wurde. Eine großmaßstäbliche Muldenstruktur im zentralen Teil der Anatoliden hat sich als Folge zweier symmetrisch angeordneter Detachment-Systeme von initial steilen zu heute flachen Orientierungen im Einflußbreich von Rolling Hinges gebildet. Die Detachment-Störungen begrenzen den Central Menderes metamorphic core complex (CMCC). Das Muster der Apatit-Spaltspuralter belegt, daß die Bildung des CMCC im Miozän begann. Durch die Rück-Deformierung von parallel zur Foliation konstruierten Linien gleicher Abkühlalter kann gezeigt werden, daß die Aufwölbung im Liegenden der Detachments zur Entstehung der Muldenstruktur führte. Das hohe topographische Relief im Bereich des CMCC ist eine Folge der Detachment-Störungen, was darauf hindeutet daß der obere Mantel in den Prozeß mit einbezogen gewesen ist.