982 resultados para Belgica (Ship)
Resumo:
The numerical model FUNWAVE was adapted in order to simulate the generation and propagation of ship waves to shore, including phenomena such as refraction, diffraction, currents and breaking of waves. Results are shown for Froude numbers equal to 0.8, 1.0 and 1.1, in order to verify the refraction of the wave pattern, identify breaking conditions and to investigate the wave generation scheme as a moving pressure at the free surface. © 2009 World Scientific Publishing Co. Pte. Ltd.
Resumo:
Incluye Bibliografía
Resumo:
New Page 1This issue of the FALBulletin presents information relating to the implementation in Latin Americanand Caribbean countries of the International Ship and Port Facility SecurityCode (ISPS Code) of the International Maritime Organization (OMI), one yearafter its entry into force on 1 July 2004. Information is included on the charges associated with the securitymeasures, in the world and in Latin America, together with an analysis ofcompliance with the measures in a group of countries from the Southern Cone ofthe region.
Resumo:
Tributyltin exposure is the primary cause of imposex development in gastropods, making them excellent bioindicators. The present research represents the first examination of butyltin (BT) contamination in surface sediments associated with imposex in Leucozonia nassa and L. ocellata in a harbour complex area in Espirito Santo, southeastern Brazil. The objectives of this study were to evaluate the organotin pollution in the area and to assess the sensitivity of both species to BT pollution through imposex development. Specimens were collected between 2007 and 2010 and the sediments were sampled in 2007. Imposex intensity was evaluated based on the percentage of imposexed females, the relative penis length index (RPLI) and the average value of the vas deferens sequence index (VDSI). BTs were analysed using gas chromatography equipped with a pulsed flame photometric detector (PFPD). The results demonstrated the occurrence of elevated concentrations of BTs in the sediment ranging from 383.7 to 7172.9 ng Sn g(-1), indicating a severe contamination of the area, which was confirmed by the biological monitoring results. Our findings also indicated that L. ocellata is a less sensitive species than L. nassa and that this differential sensitivity plays a key role in the distributions of the populations of both species in the studied area.
Resumo:
La presente dissertazione investiga la possibilità di ottimizzare l’uso di energia a bordo di una nave per trasporto di prodotti chimici e petrolchimici. Il software sviluppato per questo studio può essere adattato a qualsiasi tipo di nave. Tale foglio di calcolo fornisce la metodologia per stimare vantaggi e miglioramenti energetici, con accuratezza direttamente proporzionale ai dati disponibili sulla configurazione del sistema energetico e sui dispositivi installati a bordo. Lo studio si basa su differenti fasi che permettono la semplificazione del lavoro; nell’introduzione sono indicati i dati necessari per svolgere un’accurata analisi ed è presentata la metodologia adottata. Inizialmente è fornita una spiegazione sul layout dell’impianto, sulle sue caratteristiche e sui principali dispositivi installati a bordo. Vengono dunque trattati separatamente i principali carichi, meccanico, elettrico e termico. In seguito si procede con una selezione delle principali fasi operative della nave: è seguito tale approccio in modo da comprendere meglio la ripartizione della richiesta di potenza a bordo della nave e il suo sfruttamento. Successivamente è svolto un controllo sul dimensionamento del sistema elettrico: ciò aiuta a comprendere se la potenza stimata dai progettisti sia assimilabile a quella effettivamente richiesta sulla nave. Si ottengono in seguito curve di carico meccanico, elettrico e termico in funzione del tempo per tutte le fasi operative considerate: tramite l’uso del software Visual Basic Application (VBA) vengono creati i profili di carico che possono essere gestiti nella successiva fase di ottimizzazione. L’ottimizzazione rappresenta il cuore di questo studio; i profili di potenza ottenuti dalla precedente fase sono gestiti in modo da conseguire un sistema che sia in grado di fornire potenza alla nave nel miglior modo possibile da un punto di vista energetico. Il sistema energetico della nave è modellato e ottimizzato mantenendo lo status quo dei dispositivi di bordo, per i quali sono considerate le configurazioni di “Load following”, “two shifts” e “minimal”. Una successiva investigazione riguarda l’installazione a bordo di un sistema di accumulo di energia termica, così da migliorare lo sfruttamento dell’energia disponibile. Infine, nella conclusione, sono messi a confronto i reali consumi della nave con i risultati ottenuti con e senza l’introduzione del sistema di accumulo termico. Attraverso la configurazione “minimal” è possibile risparmiare circa l’1,49% dell’energia totale consumata durante un anno di attività; tale risparmio è completamente gratuito poiché può essere raggiunto seguendo alcune semplici regole nella gestione dell’energia a bordo. L’introduzione di un sistema di accumulo termico incrementa il risparmio totale fino al 4,67% con un serbatoio in grado di accumulare 110000 kWh di energia termica; tuttavia, in questo caso, è necessario sostenere il costo di installazione del serbatoio. Vengono quindi dibattuti aspetti economici e ambientali in modo da spiegare e rendere chiari i vantaggi che si possono ottenere con l’applicazione di questo studio, in termini di denaro e riduzione di emissioni in atmosfera.
Resumo:
The thesis, developed in collaboration between the team Systems and Equipment for Energy and Environment of Bologna University and Chalmers University of Technology in Goteborg, aims to study the benefits resulting from the adoption of a thermal storage system for marine application. To that purpose a chruis ship has been considered. To reach the purpose has been used the software EGO (Energy Greed Optimization) developed by University of Bologna.
Resumo:
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.
Resumo:
Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2) ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2011) that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures). In cruise (1), the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2), after a subset of the data are corrected, close agreement between observations and 20CR is found for geopotential height (GPH) and temperature notwithstanding a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements from ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1) and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2) are considered as promising results. Moreover, they are consistent with the error estimations. The results suggest room for further improvement of data products in remote regions.
Resumo:
The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.