987 resultados para Behavioral Androgen Responses
Resumo:
Various transcription factors act as nuclear effectors of the cAMP-dependent signaling pathway. These are the products of three genes in the mouse, CREB, CRE modulator (CREM), and ATF-1. CREM proteins are thought to play important roles within the hypothalamic–pituitary axis and in the control of rhythmic functions in the pineal gland. We have generated CREM-mutant mice and investigated their response in a variety of behavioral tests. CREM-null mice show a drastic increase in locomotion. In contrast to normal mice, the CREM-deficient mice show equal locomotor activity during the circadian cycle. The anatomy of the hypothalamic suprachiasmatic nuclei, the center of the endogenous pacemaker, is normal in mutant mice. Remarkably, CREM mutant mice also elicit a different emotional state, revealed by a lower anxiety in two different behavioral models, but they preserve the conditioned reactiveness to stress. These results demonstrate the high degree of functional specificity of each cAMP-responsive transcription factor in behavioral control.
Resumo:
In subjects suffering from early onset strabismus, signals conveyed by the two eyes are not perceived simultaneously but in alternation. We exploited this phenomenon of interocular suppression to investigate the neuronal correlate of binocular rivalry in primary visual cortex of awake strabismic cats. Monocularly presented stimuli that were readily perceived by the animal evoked synchronized discharges with an oscillatory patterning in the γ-frequency range. Upon dichoptic stimulation, neurons responding to the stimulus that continued to be perceived increased the synchronicity and the regularity of their oscillatory patterning while the reverse was true for neurons responding to the stimulus that was no longer perceived. These differential changes were not associated with modifications of discharge rate, suggesting that at early stages of visual processing the degree of synchronicity rather than the amplitude of responses determines which signals are perceived and control behavioral responses.
Resumo:
Chemotaxis of Escherichia coli toward phosphotransferase systems (PTSs)–carbohydrates requires phosphoenolpyruvate-dependent PTSs as well as the chemotaxis response regulator CheY and its kinase, CheA. Responses initiated by flash photorelease of a PTS substrates d-glucose and its nonmetabolizable analog methyl α-d-glucopyranoside were measured with 33-ms time resolution using computer-assisted motion analysis. This, together with chemotactic mutants, has allowed us to map out and characterize the PTS chemotactic signal pathway. The responses were absent in mutants lacking the general PTS enzymes EI or HPr, elevated in PTS transport mutants, retarded in mutants lacking CheZ, a catalyst of CheY autodephosphorylation, and severely reduced in mutants with impaired methyl-accepting chemotaxis protein (MCP) signaling activity. Response kinetics were comparable to those triggered by MCP attractant ligands over most of the response range, the most rapid being 11.7 ± 3.1 s−1. The response threshold was <10 nM for glucose. Responses to methyl α-d-glucopyranoside had a higher threshold, commensurate with a lower PTS affinity, but were otherwise kinetically indistinguishable. These facts provide evidence for a single pathway in which the PTS chemotactic signal is relayed rapidly to MCP–CheW–CheA signaling complexes that effect subsequent amplification and slower CheY dephosphorylation. The high sensitivity indicates that this signal is generated by transport-induced dephosphorylation of the PTS rather than phosphoenolpyruvate consumption.
Resumo:
Testosterone acts on cells through intracellular transcription-regulating androgen receptors (ARs). Here, we show that mouse IC-21 macrophages lack the classical AR yet exhibit specific nongenomic responses to testosterone. These manifest themselves as testosterone-induced rapid increase in intracellular free [Ca2+], which is due to release of Ca2+ from intracellular Ca2+ stores. This Ca2+ mobilization is also inducible by plasma membrane-impermeable testosterone-BSA. It is not affected by the AR blockers cyproterone and flutamide, whereas it is completely inhibited by the phospholipase C inhibitor U-73122 and pertussis toxin. Binding sites for testosterone are detectable on the surface of intact IC-21 cells, which become selectively internalized independent on caveolae and clathrin-coated vesicles upon agonist stimulation. Internalization is dependent on temperature, ATP, cytoskeletal elements, phospholipase C, and G-proteins. Collectively, our data provide evidence for the existence of G-protein-coupled, agonist-sequestrable receptors for testosterone in plasma membranes, which initiate a transcription-independent signaling pathway of testosterone.
Resumo:
Stimulation of dopamine D1 receptors has profound effects on addictive behavior, movement control, and working memory. Many of these functions depend on dopaminergic systems in the striatum and D1–D2 dopamine receptor synergies have been implicated as well. We show here that deletion of the D1 dopamine receptor produces a neural phenotype in which amphetamine and cocaine, two addictive psychomotor stimulants, can no longer stimulate neurons in the striatum to express cFos or JunB or to regulate dynorphin. By contrast, haloperidol, a typical neuroleptic that acts preferentially at D2-class receptors, remains effective in inducing catalepsy and striatal Fos/Jun expression in the D1 mutants, and these behavioral and neural effects can be blocked by D2 dopamine receptor agonists. These findings demonstrate that D2 dopamine receptors can function without the enabling role of D1 receptors but that D1 dopamine receptors are essential for the control of gene expression and motor behavior by psychomotor stimulants.
Resumo:
The primary sensory neurons that respond to noxious stimulation and project to the spinal cord are known to fall into two distinct groups: one sensitive to nerve growth factor and the other sensitive to glial cell-line-derived neurotrophic factor. There is currently considerable interest in the ways in which these factors may regulate nociceptor properties. Recently, however, it has emerged that another trophic factor—brain-derived neurotrophic factor (BDNF)—may play an important neuromodulatory role in the dorsal horn of the spinal cord. BDNF meets many of the criteria necessary to establish it as a neurotransmitter/neuromodulator in small-diameter nociceptive neurons. It is synthesized by these neurons and packaged in dense core vesicles in nociceptor terminals in the superficial dorsal horn. It is markedly up-regulated in inflammatory conditions in a nerve growth factor-dependent fashion. Postsynaptic cells in this region express receptors for BDNF. Spinal neurons show increased excitability to nociceptive inputs after treatment with exogenous BDNF. There are both electrophysiological and behavioral data showing that antagonism of BDNF at least partially prevents some aspects of central sensitization. Together, these findings suggest that BDNF may be released from primary sensory nociceptors with activity, particularly in some persistent pain states, and may then increase the excitability of rostrally projecting second-order systems. BDNF released from nociceptive terminals may thus contribute to the sensory abnormalities associated with some pathophysiological states, notably inflammatory conditions.
Resumo:
A novel mechanism of reciprocal behavioral agonist-antagonist activities of enantiomeric pheromones plays a pivotal role in overcoming the signal-to-noise problem derived from the use of a single-constituent pheromone system in scarab beetles. Female Anomala osakana produce (S, Z)-5-(+)-(1-decenyl)oxacyclopentan-2-one, which is highly attractive to males; the response is completely inhibited even by 5% of its antipode. These two enantiomers have reverse roles in the Popillia japonica sex pheromone system. Chiral GC-electroantennographic detector experiments suggest that A. osakana and P. japonica have both R and S receptors that are responsible for behavioral agonist and antagonist responses.
Resumo:
Whereas temperature and humidity are critical variables affecting physiology, behavior, and evolution, the genetic and neuronal underpinnings of thermosensation and hygrosensation remain poorly understood. We have initiated a behavioral-genetic investigation of these sensory systems in Drosophila. Behavioral tests are described for the rapid screening of mutants defective in thermosensation and hygrosensation. We demonstrate the strong responses of normal flies to temperature and humidity. Two mutants were found with defects in thermosensation, only one of which is also defective in hygrosensation, indicating that they involve different sensory mechanisms. Ablation experiments further separate these sensory systems by showing that thermoreceptors are housed in the third antennal segment, whereas hygroreceptors are located more distally in the antennal arista.
Resumo:
Optokinetic and phototactic behaviors of zebrafish larvae were examined for their usefulness in screening for recessive defects in the visual system. The optokinetic response can be reliably and rapidly detected in 5-day larvae, whereas the phototactic response of larvae is variable and not robust enough to be useful for screening. We therefore measured optokinetic responses of mutagenized larvae as a genetic screen for visual system defects. Third-generation larvae, representing 266 mutagenized genomes, were examined for abnormal optokinetic responses. Eighteen optokinetic-defective mutants were identified and two mutants that did not show obvious morphological defects, no optokinetic response a (noa) and partial optokinetic response a (poa), were studied further. We recorded the electroretinogram (ERG) to determine whether these two mutations affect the retina. The b-wave of noa larvae was grossly abnormal, being delayed in onset and significantly reduced in amplitude. In contrast, the ERG waveform of poa larvae was normal, although the b-wave was reduced in amplitude in bright light. Histologically, the retinas of noa and poa larvae appeared normal. We conclude that noa larvae have a functional defect in the outer retina, whereas the outer retina of poa larvae is likely to be normal.
Resumo:
Calcium/phospholipid-dependent protein kinase (protein kinase C, PKC) has been suggested to play a role in the sensitivity of gamma-aminobutyrate type A (GABAA) receptors to ethanol. We tested a line of null mutant mice that lacks the gamma isoform of PKC (PKC gamma) to determine the role of this brain-specific isoenzyme in ethanol sensitivity. We found that the mutation reduced the amount of PKC gamma immunoreactivity in cerebellum to undetectable levels without altering the levels of the alpha, beta I, or beta II isoforms of PKC. The mutant mice display reduced sensitivity to the effects of ethanol on loss of righting reflex and hypothermia but show normal responses to flunitrazepam or pentobarbital. Likewise, GABAA receptor function of isolated brain membranes showed that the mutation abolished the action of ethanol but did not alter actions of flunitrazepam or pentobarbital. These studies show the unique interactions of ethanol with GABAA receptors and suggest protein kinase isoenzymes as possible determinants of genetic differences in response to ethanol.
Resumo:
During early development, interactions between the two eyes are critical in the formation of eye-specific domains within the lateral geniculate nucleus and the visual cortex. When monocular enucleation is done early in prenatal life, it induces remarkable anatomical and functional reorganizations of the visual pathways. Behavioral data have shown a loss in sensitivity to low-spatial-frequency gratings in cats. To correlate the behavioral observations with a possible change in the analysis of contrast at the level of primary visual areas we recorded visual evoked potentials at the 17/18 border in two cats enucleated prenatally (gestational age at enucleation, 39-42 days), three neonatal, two control animals, and one animal with a surgical removal of Y-ganglion fibers. Our results show a strong attenuation in the amplitude of response at all contrast values for gratings of low spatial frequency in prenatally enucleated cats, whereas neonatally enucleated and control animals present responses of comparable amplitude. We conclude that the behavioral results reflect the reduced sensitivity for low frequencies of visual cortical neurons. In addition, we define a critical period for the development of the contrast-sensitivity function that seems to be limited to the prenatal gestation period. We suggest that the prenatal interruption of binocular interactions leads to a functional elimination of the Y-ganglion system.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The ability of adult cotton bollworm, Helicoverpa armigera (Hubner), to distinguish and respond to enantiomers of alpha-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (-) compared to the (+) form, indicating greater affinity for the (-) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (-) forms of alpha-pinene. Moths with no odor conditioning showed an innate preference for (+)-alpha-pinene. This preference displayed by naive moths was not significantly different from the preferences of moths conditioned on (+)-alpha-pinene. However, we found a significant difference in preference between moths conditioned on the (-) enantiomer compared to naive moths and moths conditioned on (+)-alpha-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of alpha-pinene than different odors (e.g., phenylacetaldehyde versus (-)-alpha-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.
Resumo:
Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.
Resumo:
Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task.