939 resultados para Bayesian belief network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

How do agents with limited cognitive capacities flourish in informationally impoverished or unexpected circumstances? Aristotle argued that human flourishing emerged from knowing about the world and our place within it. If he is right, then the virtuous processes that produce knowledge, best explain flourishing. Influenced by Aristotle, virtue epistemology defends an analysis of knowledge where beliefs are evaluated for their truth and the intellectual virtue or competences relied on in their creation. However, human flourishing may emerge from how degrees of ignorance are managed in an uncertain world. Perhaps decision-making in the shadow of knowledge best explains human wellbeing—a Bayesian approach? In this dissertation I argue that a hybrid of virtue and Bayesian epistemologies explains human flourishing—what I term homeostatic epistemology. Homeostatic epistemology supposes that an agent has a rational credence p when p is the product of reliable processes aligned with the norms of probability theory; whereas an agent knows that p when a rational credence p is the product of reliable processes such that: 1) p meets some relevant threshold for belief (such that the agent acts as though p were true and indeed p is true), 2) p coheres with a satisficing set of relevant beliefs and, 3) the relevant set of beliefs is coordinated appropriately to meet the integrated aims of the agent. Homeostatic epistemology recognizes that justificatory relationships between beliefs are constantly changing to combat uncertainties and to take advantage of predictable circumstances. Contrary to holism, justification is built up and broken down across limited sets like the anabolic and catabolic processes that maintain homeostasis in the cells, organs and systems of the body. It is the coordination of choristic sets of reliably produced beliefs that create the greatest flourishing given the limitations inherent in the situated agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxic blooms of Lyngbya majuscula occur in coastal areas worldwide and have major ecological, health and economic consequences. The exact causes and combinations of factors which lead to these blooms are not clearly understood. Lyngbya experts and stakeholders are a particularly diverse group, including ecologists, scientists, state and local government representatives, community organisations, catchment industry groups and local fishermen. An integrated Bayesian Network approach was developed to better understand and model this complex environmental problem, identify knowledge gaps, prioritise future research and evaluate management options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian networks (BNs) provide a statistical modelling framework which is ideally suited for modelling the many factors and components of complex problems such as healthcare-acquired infections. The methicillin-resistant Staphylococcus aureus (MRSA) organism is particularly troublesome since it is resistant to standard treatments for Staph infections. Overcrowding and understa�ng are believed to increase infection transmission rates and also to inhibit the effectiveness of disease control measures. Clearly the mechanisms behind MRSA transmission and containment are very complicated and control strategies may only be e�ective when used in combination. BNs are growing in popularity in general and in medical sciences in particular. A recent Current Content search of the number of published BN journal articles showed a fi�ve fold increase in general and a six fold increase in medical and veterinary science from 2000 to 2009. This chapter introduces the reader to Bayesian network (BN) modelling and an iterative modelling approach to build and test the BN created to investigate the possible role of high bed occupancy on transmission of MRSA while simultaneously taking into account other risk factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This overview article for the special series “Bayesian Networks in Environmental and Resource Management” reviews 7 case study articles with the aim to compare Bayesian network (BN) applications to different environmental and resource management problems from around the world. The article discusses advances in the last decade in the use of BNs as applied to environmental and resource management. We highlight progress in computational methods, best-practices for model design and model communication. We review several research challenges to the use of BNs in environmental and resource management that we think may find a solution in the near future with further research attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obtaining attribute values of non-chosen alternatives in a revealed preference context is challenging because non-chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non-chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non-chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non-chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non-chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduces a method of applying Bayesian Networks to combine information from a range of data sources for effective decision support systems. It develops a set of techniques in development, validation, visualisation, and application of Complex Systems models, with a working demonstration in an Australian airport environment. The methods presented here have provided a modelling approach that produces highly flexible, informative and applicable interpretations of a system's behaviour under uncertain conditions. These end-to-end techniques are applied to the development of model based dashboards to support operators and decision makers in the multi-stakeholder airport environment. They provide highly flexible and informative interpretations and confidence in these interpretations of a system's behaviour under uncertain conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the issue of finding uncertainty intervals for queries in a Bayesian Network is reconsidered. The investigation focuses on Bayesian Nets with discrete nodes and finite populations. An earlier asymptotic approach is compared with a simulation-based approach, together with further alternatives, one based on a single sample of the Bayesian Net of a particular finite population size, and another which uses expected population sizes together with exact probabilities. We conclude that a query of a Bayesian Net should be expressed as a probability embedded in an uncertainty interval. Based on an investigation of two Bayesian Net structures, the preferred method is the simulation method. However, both the single sample method and the expected sample size methods may be useful and are simpler to compute. Any method at all is more useful than none, when assessing a Bayesian Net under development, or when drawing conclusions from an ‘expert’ system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to ‘empty’ reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence.