878 resultados para BRAIN DEVELOPMENT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homozygous mutations in the Reelin gene result in severe disruption of brain development. The histogenesis of layered regions, like the neocortex, hippocampus and the cerebellum, is most notably affected in mouse reeler mutants and similar traits are also present in mice lacking molecular components of the Reelin signalling pathway. Moreover, there is evidence for an additional role of Reelin in sustaining synaptic plasticity in adult networks. Nitric oxide is an important gaseous messenger that can modulate neuronal plasticity both in developing and mature synaptic networks and has been shown to facilitate synaptic changes in the hippocampus, cerebellum and olfactory bulb. We studied the distribution and content of neuronal nitric oxide synthase in the olfactory bulbs of reeler and wildtype mice. Immunocytochemistry reveals that Reelin and neuronal nitric oxide synthase containing interneurons are two distinct, non overlapping cell populations of the olfactory bulb. We show by in situ hybridization that both nitrergic and Reelin expressing cells represent only a subset of olfactory bulb GABAergic neurons. Immunoblots show that neuronal nitric oxide synthase protein content is decreased by two thirds in reeler mice causing a detectable loss of immunolabelled cells throughout the olfactory bulb of this strain. However, neuronal nitric oxide synthase mRNA levels, essayed by quantitative real-time RT-PCR, are unaffected in the reeler olfactory bulb. Thus, disruption of the Reelin signalling pathway may modify the turnover of neuronal nitric oxide synthase in the olfactory bulb and possibly affects nitric oxide functions in reeler mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cognitive functions in the child's brain develop in the context of complex adaptive processes, determined by genetic and environmental factors. Little is known about the cerebral representation of cognitive functions during development. In particular, knowledge about the development of right hemispheric (RH) functions is scarce. Considering the dynamics of brain development, localization and lateralization of cognitive functions must be expected to change with age. Twenty healthy subjects (8.6-20.5 years) were examined with fMRI and neuropsychological tests. All participants completed two fMRI tasks known to activate left hemispheric (LH) regions (language tasks) and two tasks known to involve predominantly RH areas (visual search tasks). A laterality index (LI) was computed to determine the asymmetry of activation. Group analysis revealed unilateral activation of the LH language circuitry during language tasks while visual search tasks induced a more widespread RH activation pattern in frontal, superior temporal, and occipital areas. Laterality of language increased between the ages of 8-20 in frontal (r = 0.392, P = 0.049) and temporal (r = 0.387, P = 0.051) areas. The asymmetry of visual search functions increased in frontal (r = -0.525, P = 0.009) and parietal (r = -0.439, P = 0.027) regions. A positive correlation was found between Verbal-IQ and the LI during a language task (r = 0.585, P = 0.028), while visuospatial skills correlated with LIs of visual search (r = -0.621, P = 0.018). To summarize, cognitive development is accompanied by changes in the functional representation of neuronal circuitries, with a strengthening of lateralization not only for LH but also for RH functions. Our data show that age and performance, independently, account for the increases of laterality with age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H) in the MCT8 gene that was sequenced directly from genomic DNA and occurred de novo in the maternal germline, as both his mother and his sister were not carriers of the mutation. Ruling out a common polymorphism, 50 normal individuals of the same ethnic background did not harbour the mutation. The identified MCT8 gene mutation (R271H) is very likely to be the genetic cause for neuronal hypothyroidism despite elevated serum T3 levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radial Glia (RG) are a mitotically active population of cells which reside within the ventricular zone at the lateral ventricle and give rise to the pyramidal neurons and astrocytes of the neocortex. Through cellular divisions, RG produce two daughter cells, one which resides in the ventricular zone and becomes another RG while the other is an immature progenitor which migrates away from the ventricle and populates the growing cortex. RG have been found to be a heterogeneous population of cells which express different surface antigens and genetic promoters which may influence the cellular fate of their progeny. In this study we have investigated the progenitor profiles of two promoters, nestin (a neural intermediate filament) and GLAST (astrocyte specific glutamate transporter) within the RG. In-utero electroporation was used to transfect reporter plasmids under the control of promoter driven Cre-Recombinase into the RG lining the lateral ventricle during mid-neurogensesis (E14). It was found that there was a large amount of overlap between the nestin and GLAST expressing populations of RG, however, there was still a small subset of cells which exclusively expressed GLAST. This prompted us to investigate the lineage of these two promoters using the PiggyBac transposon system which uses promoter driven episomal plasmids to incorporate a reporter gene into the genome of the transfected cells, allowing use to trace their full progeny. Our data shows that nestin expressing RG generate mostly neurons and few astrocytes while the GLAST expressing RG generate a greater proportion of astrocytes to neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developmental Dyslexia is a reading disorder that affects individuals that possess otherwise normal intelligence. Until the four candidate dyslexia susceptibility genes were discovered, the cause of cortical malformations found in post mortem dyslexic brains was unclear. Normal brain development is crucial for the proper wiring of the neural circuitry that allow an individual to perform cognitive tasks like reading. For years, familial and twin studies have suggested that there was a genetic basis to the causation of dyslexia. Kiaa0319 was among the candidate dyslexia susceptibility genes that were ascertained. KIAA0319 is located on Chromosome 6p22.2-22.3 and has been found to exhibit differential spatial-temporal expression patterns in the brain throughout development, which suggests that the polycystic kidney disease (PKD) domain encoded by KIAA0319 facilitates cell-cell adhesion to enable neuronal precursors to crawl up the radial glia during neuronal migration. With the knowledge of KIAA0319 involvement in early neurogenesis, we were interested in determining how different KIAA0319 expression may impact cortical neurons in layer II and III during early adulthood. We show that KIAA0319 knockdown in cortical pyramidal neurons significantly reduces the dendritic spine density. Studies have shown that changes in dendritic spine morphology and density affect properties of neural circuitry. Henceforth, this finding may reveal a link between the Kiaa0319 gene and the deficit of the neural processing task of reading due to reduced spines density. Finding a correlation between Kiaa0319 expression and its influence on dendritic spine development may lead to a greater insight of a direct link between the dyslexia susceptibility gene and the biological mechanism that causes dyslexia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proliferative role of E2F has been under investigation for several years. However, while it is known that E2F1 and E2F4 play a part in development and differentiation, research has not been centered on determining the exact functions these E2Fs play in brain development, given there high expression levels throughout embryogenesis. A GFAP-E2F1 mouse model directing human E2F1 transgene expression to glial cells, such as ependymal cells, was used in the present study in combination with an E2F4 mutant mouse model. Interestingly, 20% of tgE2F1; E2F4 null mice developed a phenotype consisting of domed head, hunched posture, seizures, tremors, hyperactivity or hypeactivity, dysnea, and low body weight. These mice died during the first three weeks of severe hydrocephalus. Similarly, tgE2F1; E2F4 heterozygous mice also develop severe hydrocephalus, although this occurs at 6 weeks at a 2% frequency. Pathological examination of the brains of those animals uncovered enlarged cerebral ventricles with marked thinning of the cerebral cortices, confirming the diagnosis of three-ventricle hydrocephalus, and the absence of tumors. Careful examination of the aqueduct shows an excess of proliferating cells that may cause a blockage of CSF. Of significance, 44% of ependymal cells in hydrocephalic tgE2F1;E2F4-/- mouse brains were positive for BrdU incorporation. Studies determining the molecular rationale for the hydrocephalic phenotype suggest proliferative ependymal cells may not be exclusively related to dysregulated cell cycle in conjuction with E2F activity. Due in part to the deficiency of E2F4 in this mouse model, we find that differentiation of these ependymal cells is not complete and instead undergoes maturation arrest. This suggestion is confirmed by the expression of genes found in neural stem cells or precursor cell populations, in the ependymal cell region of tgE2F1; E2F4-/-. Therefore, from this study, we conclude that dysregulated E2F1 expression in combination with deficient E2F4 expression results in an undifferentiated ependymal cell population that is hyperproliferative in the ventricular system causing an impediment of CSF circulation. It is further concluded that normal E2F1 and E2F4 expression in brain development is crucial for the proper formation and function of the ventricular system.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gene encoding the mouse vitamin D receptor has been cloned. A new exon 1 has been found that changes the numbering established for the human VDR gene. Exons 2 and 3 in the human VDR gene (coding for the zinc fingers 1 and 2, respectively) are named exons 3 and 4 in the mouse vitamin D receptor. The 1.5-kb 5′-flanking region of the new exon 1 was analyzed and revealed the presence of putative cis-acting elements. Despite the absence of a TATA box, this 5′-flanking region contains several characteristics of a GC-rich promoter including four Sp1 sites present in tandem and two CCAAT boxes. Interestingly, the Sp1 site that is the most proximal to the new exon 1 overlaps a perfect site for Krox-20/24. Krox-20 is a transcription factor involved in brain development, and also in bone remodeling. In luciferase reporter gene expression assays, we showed that sequences from this 5′-flanking region elicit high transactivation activity. Furthermore, in the NIH 3T3 cell line, a 3- to 5-fold increase in response to forskolin treatment (an activator of adenylate cyclase and in turn of protein kinase A pathway) was observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal migration is a critical phase of brain development, where defects can lead to severe ataxia, mental retardation, and seizures. In the developing cerebellum, granule neurons turn on the gene for tissue plasminogen activator (tPA) as they begin their migration into the cerebellar molecular layer. Granule neurons both secrete tPA, an extracellular serine protease that converts the proenzyme plasminogen into the active protease plasmin, and bind tPA to their cell surface. In the nervous system, tPA activity is correlated with neurite outgrowth, neuronal migration, learning, and excitotoxic death. Here we show that compared with their normal counterparts, mice lacking the tPA gene (tPA−/−) have greater than 2-fold more migrating granule neurons in the cerebellar molecular layer during the most active phase of granule cell migration. A real-time analysis of granule cell migration in cerebellar slices of tPA−/− mice shows that granule neurons are migrating 51% as fast as granule neurons in slices from wild-type mice. These findings establish a direct role for tPA in facilitating neuronal migration, and they raise the possibility that late arriving neurons may have altered synaptic interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although it has been known for some time that estrogen exerts a profound influence on brain development a definitive demonstration of the role of the classical estrogen receptor (ERα) in sexual differentiation has remained elusive. In the present study we used a sexually dimorphic population of dopaminergic neurons in the anteroventral periventricular nucleus of the hypothalamus (AVPV) to test the dependence of sexual differentiation on a functional ERα by comparing the number of tyrosine hydroxylase (TH)-immunoreactive neurons in the AVPV of wild-type (WT) mice with that of mice in which the ERα had been disrupted by homologous recombination (ERKOα). Only a few ERα-immunoreactive neurons were detected in the AVPV of ERKOα mice, and the number of TH-immunoreactive neurons was three times that of WT mice, suggesting that disruption of the ERα gene feminized the number of TH-immunoreactive neurons. In contrast, the AVPV contains the same number of TH-immunoreactive neurons in testicular feminized male mice as in WT males, indicating that sexual differentiation of this population of neurons is not dependent on an intact androgen receptor. The number of TH-immunoreactive neurons in the AVPV of female ERKOα mice remained higher than that of WT males, but TH staining appeared to be lower than that of WT females. Thus, the sexual differentiation of dopamine neurons in the AVPV appears to be receptor specific and dependent on the perinatal steroid environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On November 29–30, 1995, the National Academy of Sciences and the Institute of Medicine brought together experts in schizophrenia and specialists in other areas of the biological sciences in a workshop aimed at promoting the application of the latest biological information to this clinical problem. The workshop paid particular attention to evidence of pathology in the brains of people with schizophrenia, and to the possibility that this reflects an abnormality in brain development that eventually leads to the appearance of symptoms. The participants were impressed with the complexity of the problem, and felt that multiple approaches would be required to understand this disease. They recommended that a major focus should be on the search for predisposing genes, but that there should be parallel research in many other areas.