176 resultados para BCP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressed cannabinoid receptor 2 (CB2). It is found in relatively high concentrations in many spices and food plants. A number of studies have shown that CB2 is critically involved in the modulation of inflammatory and neuropathic pain responses. In this study, we have investigated the analgesic effects of BCP in animal models of inflammatory and neuropathic pain. We demonstrate that orally administered BCP reduced inflammatory (late phase) pain responses in the formalin test in a CB2 receptor-dependent manner, while it had no effect on acute (early phase) responses. In a neuropathic pain model the chronic oral administration of BCP attenuated thermal hyperalgesia and mechanical allodynia, and reduced spinal neuroinflammation. Importantly, we found no signs of tolerance to the anti-hyperalgesic effects of BCP after prolonged treatment. Oral BCP was more effective than the subcutaneously injected synthetic CB2 agonist JWH-133. Thus, the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproductive hormones have effects on the nervous system not directly related to reproductive function. In the rat, for example, luteinizing hormone releasing hormone has dramatic effects on learning and memory. The present work attempts to examine the effects of reproductive hormones on non-reproductive behaviors and the neural loci and mechanisms underlying these effects in Aplysia, an animal whose behaviors, reproductive hormones and neural circuitry have been well characterized.^ In Aplysia, the neurosecretory bag cells release several peptides that are responsible for eliciting egg laying. The effects of these peptides on the defensive tail-siphon withdrawal reflex, as well as sensitization of this reflex, were examined. Sensitization, a simple form of nonassociative learning, refers to the behavioral enhancement of a response to a test stimulus after the presentation of a strong stimulus, that may last minutes (short-term) or days (long-term). An extract of the bag cells (BCE) inhibited the baseline siphon component of the tail-siphon withdrawal reflex and suppressed long-term, but not short-term, sensitization of the reflex. Preliminary experiments suggest that BCE also affects the tail component of the tail-siphon withdrawal reflex.^ To determine the neural mechanisms underlying the inhibition of the baseline reflex, electrophysiological studies were performed using an in vitro analogue of the tail-siphon withdrawal reflex to examine the ability of BCE, as well as the individual bag cell peptides (BCPs), to modulate the circuitry of the reflex. Bag cell extract attenuated the synaptic strength of the monosynaptic connections between tail sensory neurons and tail motor neurons. When individually applied only $\beta$-BCP produced a similar attenuation. This effect of $\beta$-BCP was not dependent on changes in duration of the presynaptic action potential.^ An in vitro analogue of long-term sensitization training was developed to examine the mechanisms by which the BCPs may affect long-term sensitization of the tail-siphon withdrawal reflex. This analogue exhibited both short- and long-term facilitation of the connections between the tail sensory and motor neurons.^ The results of these behavioral and electrophysiological experiments suggest that the BCPs inhibit the tail-siphon withdrawal reflex, at least in part, by modulating the synaptic strength of the connections between the sensory neurons and motor neurons underlying the reflex. One candidate for this effect is $\beta$-BCP. Thus, the peptides which elicit egg laying may also serve other functions such as the inhibition of defensive reflexes. In addition, these experiments raise the possibility that BCPs may exert a long lasting effect ($>$24 hr), suppressing long-term sensitization of the tail-siphon withdrawal reflex. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolomics is the global and unbiased survey of the complement of small molecules (say, <1 kDa) in a biofluid, tissue, organ or organism and measures the end-products of the cellular metabolism of both endogenous and exogenous substrates. Many drug candidates fail during Phase II and III clinical trials at an enormous cost to the pharmaceutical industry in terms of both time lost and of financial resources. The constantly evolving model of drug development now dictates that biomarkers should be employed in preclinical development for the early detection of likely-to-fail candidates. Biomarkers may also be useful in the preselection of patients and through the subclassification of diseases in clinical drug development. Here we show with examples how metabolomics can assist in the preclinical development phases of discovery, pharmacology, toxicology, and ADME. Although not yet established as a clinical trial patient prescreening procedure, metabolomics shows considerable promise in this regard. We can be certain that metabolomics will join genomics and transcriptomics in lubricating the wheels of clinical drug development in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the suitability of a minipig model for the study of bone healing and osseointegration of dental implants following bone splitting and expansion of narrow ridges. MATERIAL AND METHODS In four minipigs, the mandibular premolars and first molars were extracted together with removal of the buccal bone plate. Three months later, ridge splitting and expansion was performed with simultaneous placement of three titanium implants per quadrant. On one side of the mandible, the expanded bone gap between the implants was filled with an alloplastic biphasic calcium phosphate (BCP) material, while the gap on the other side was left unfilled. A barrier membrane was placed in half of the quadrants. After a healing period of 6 weeks, the animals were sacrificed for histological evaluation. RESULTS In all groups, no bone fractures occurred, no implants were lost, all 24 implants were osseointegrated, and the gap created by bone splitting was filled with new bone, irrespective of whether BCP or a barrier membrane was used. Slight exposure of five implants was observed, but did not lead to implant loss. The level of the most coronal bone-to-implant contact varied without being dependent on the use of BCP or a barrier membrane. In all groups, the BCP particles were not present deep in the bone-filled gap. However, BCP particles were seen at the crestal bone margin, where they were partly integrated in the new bone. CONCLUSIONS This new minipig model holds great promise for studying experimental ridge splitting/expansion. However, efforts must be undertaken to reduce implant exposure and buccal bone resorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides the suggested role of a putative endocannabinoid membrane transporter mediating the cellular uptake of the endocannabinoid anandamide (AEA), this process is intrinsically coupled to AEA degradation by the fatty acid amide hydrolase (FAAH). Differential blockage of each mechanism is possible using specific small-molecule inhibitors. Starting from the natural product-derived 2E,4E-dodecadiene scaffold previously shown to interact with the endocannabinoid system (ECS), a series of diverse N-alkylcarbamates were prepared with the aim of generating novel ECS modulators. While being inactive at cannabinoid receptors and monoacylglycerol lipase, these N-alkylcarbamates showed potent to ultrapotent picomolar FAAH inhibition in U937 cells. Overall, a highly significant correlation (Spearman's rho=0.91) was found between the inhibition of FAAH and AEA cellular uptake among 54 compounds. Accordingly, in HMC-1 cells lacking FAAH expression the effect on AEA cellular uptake was dramatically reduced. Unexpectedly, 3-(4,5-dihydrothiazol-2-yl)phenyl carbamates and the 3-(1,2,3-thiadiazol-4-yl)phenyl carbamates WOBE490, WOBE491 and WOBE492 showed a potentiation of cellular AEA uptake inhibition in U937 cells, resulting in unprecedented femtomolar (hyperpotent) IC50 values. Potential methodological issues and the role of cellular accumulation of selected probes were investigated. It is shown that albumin impacts the potency of specific N-alkylcarbamates and, more importantly, that accumulation of FAAH inhibitors can significantly increase their effect on cellular AEA uptake. Taken together, this series of N-alkylcarbamates shows a FAAH-dependent inhibition of cellular AEA uptake, which can be strongly potentiated using specific head group modifications. These findings provide a rational basis for the development of hyperpotent AEA uptake inhibitors mediated by ultrapotent FAAH inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Praziquantel (PZQ), prescribed as a racemic mixture, is the most readily available drug to treat schistosomiasis. In the present study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based metabolomics was employed to decipher the metabolic pathways and enantioselective metabolic differences of PZQ. Many phase I and four new phase II metabolites were found in urine and feces samples of mice 24h after dosing, indicating that the major metabolic reactions encompassed oxidation, dehydrogenation, and glucuronidation. Differences in the formation of all these metabolites were observed between (R)-PZQ and (S)-PZQ. In an in vitro phase I incubation system, the major involvement of CYP3A, CYP2C9, and CYP2C19 in the metabolism of PZQ, and CYP3A, CYP2C9, and CYP2C19 exhibited different catalytic activity toward the PZQ enantiomers. Apparent Km and Vmax differences were observed in the catalytic formation of three mono-oxidized metabolites by CYP2C9 and CYP3A4 further supporting the metabolic differences for PZQ enantiomers. Molecular docking showed that chirality resulted in differences in substrate location and conformation, which likely accounts for the metabolic differences. In conclusion, in silico, in vitro, and in vivo methods revealed the enantioselective metabolic profile of praziquantel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischemia/reperfusion injury (IRI) may occur from ischemia due to thrombotic occlusion, trauma or surgical interventions, including transplantation, with subsequent reestablishment of circulation. Time-dependent molecular and structural changes result from the deprivation of blood and oxygen in the affected tissue during ischemia. Upon restoration of blood flow a multifaceted network of plasma cascades is activated, including the complement-, coagulation-, kinin-, and fibrinolytic system, which plays a major role in the reperfusion-triggered inflammatory process. The plasma cascade systems are therefore promising therapeutic targets for attenuation of IRI. Earlier studies showed beneficial effects through inhibition of the complement system using specific complement inhibitors. However, pivotal roles in IRI are also attributed to other cascades. This raises the question, whether drugs, such as C1 esterase inhibitor, which regulate more than one cascade at a time, have a higher therapeutic potential. The present review discusses different therapeutic approaches ranging from specific complement inhibition to simultaneous inhibition of plasma cascade systems for reduction of IRI, gives an overview of the plasma cascade systems in IRI as well as highlights recent findings in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES The occurrence of multinucleated giant cells (MNGCs) on bone substitute materials has been recognized for a long time. However, there have been no studies linking material characteristics with morphology of the MNGCs. The aim was to analyze the qualitative differences of MNGCs on two commercially available calcium phosphate bone substitute materials retrieved from bone defects. MATERIAL AND METHODS Six defects were prepared bilaterally in the mandibular body of three mini pigs. The defects were randomly grafted with either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP). After a healing period of four weeks, bone blocks were embedded in LR White resin. Three consecutive sections per defect were analyzed as follows: two with light microscopy using toluidine blue and tartrate-resistant acid phosphatase (TRAP) staining and one with transmission electron microscopy. RESULTS Multinucleated giant cells appeared on both biomaterials. On BCP, MNGCs had a flat morphology and were not observed in resorption lacunae. On DBBM, the MNGCs appeared more round and were often found in shallow concavities. MNGCs on both biomaterials demonstrated a varying degree of TRAP staining, with a tendency toward higher staining intensity of MNGCs on BCP. At the ultrastructural level, signs of superficial dissolution of BCP together with phagocytosis of minor fragments were observed. MNGCs on the surface of DBBM demonstrated sealing zones and ruffled borders, both features of mature osteoclasts. CONCLUSION MNGCs demonstrated distinctly different histological features depending on the bone substitute material used. Further research is warranted to understand the clinical implications of these morphological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1478-1487, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS γ-Hydroxybutyrate (GHB) is used as a treatment for narcolepsy and alcohol withdrawal and as recreational substance. Nevertheless, there are limited data on the pharmacokinetics and pharmacokinetic-pharmacodynamic relationship of GHB in humans. We characterized the pharmacokinetic profile and exposure-psychotropic effect relationship of GHB in humans. METHODS Two oral doses of GHB (25 and 35 mg/kg) were administered to 32 healthy male subjects (16 for each dose) using a randomized, placebo-controlled, cross-over design. RESULTS Maximal concentrations of GHB were (geometric mean and 95%CI): 218 (176-270) nmol/ml and 453 (374-549) nmol/ml for the 25 and 35 mg/kg GHB doses, respectively. The elimination half-lives (mean ± SD) were 36 ± 9 and 39 ± 7 min and the AUC∞ values (geometric mean and 95%CI) were 15,747 (12,854-19,290) and 40,113 (33,093-48,622) nmol∙min/ml for the 20 and 35 mg/kg GHB doses, respectively. Thus, plasma GHB exposure (AUC0-∞ ) rose disproportionally (+40%) with the higher dose. γ-Hydroxybutyrate produced mixed stimulant-sedative effects, with a dose-dependent increase in sedation and dizziness. It did not alter heart rate or blood pressure. A close relationship between plasma GHB exposure and its psychotropic effects was found, with higher GHB concentrations associated with higher subjective stimulation, sedation, and dizziness. No clockwise hysteresis was observed in the GHB concentration effect plot over time (i.e., no acute pharmacological tolerance). CONCLUSION Evidence was found of a non-linear dose-exposure relationship (i.e., no dose proportionality) at moderate doses of GHB. The effects of GHB on consciousness were closely linked to its plasma exposure and exhibited no acute tolerance. This article is protected by copyright. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los abortos incompletos causan muchas complicaciones y las muertes de miles de mujeres por año. Las mujeres que necesitan asistencia sanitaria después de un aborto incompleto generalmente consultan por problemas de una hemorragia importante o infección. Generalmente, los antibióticos se administran cuando hay signos de infección. La revisión de los ensayos mostró que las mujeres tienen dificultades en tomar los antibióticos y regresar para la atención, de manera que los antibióticos de dosis única pueden ser más apropiados en estas circunstancias. Los ensayos no aportaron suficientes pruebas para demostrar los efectos de la administración sistemática de antibióticos en las mujeres después del aborto incompleto