929 resultados para Autophagic Cell Death
Resumo:
Nitensidine A is a guanidine alkaloid isolated from Pterogyne nitens, a common plant in South America. To gain insight into the biological activity of P. nitens-produced compounds, we examined herein their biological effects on osteoclasts, multinucleated giant cells that regulate bone metabolism by resorbing bone. Among four guanidine alkaloids (i.e., galegine, nitensidine A, pterogynidine, and pterogynine), nitensidine A and pterogynine exhibited anti-osteoclastic effects at 10 μM by reducing the number of osteoclasts on the culture plate whereas galegine and pterogynidine did not. The anti-osteoclastic activities of nitensidine A and pterogynine were exerted in a concentration-dependent manner, whereas nitensidine A exhibited an approximate threefold stronger effect than pterogynine (IC50 values: nitensidine A, 0.93 ± 0.024 μM; pterogynine, 2.7 ± 0.40 μM). In the present study, the anti-osteoclastic effects of two synthetic nitensidine A derivatives (nitensidine AT and AU) were also examined to gain insight into the structural features of nitensidine A that exert an anti-osteoclastic effect. The anti-osteoclastic effect of nitensidine A was greatly reduced by substituting the imino nitrogen atom in nitensidine A with sulfur or oxygen. According to the differences in chemical structures and anti-osteoclastic effects of the four guanidine alkaloids and the two synthetic nitensidine A derivatives, it is suggested that the number, binding site, and polymerization degree of isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their anti-osteoclastic effects. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing >= 50% inhibition property against CHIKV at 10 mu M were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 mu M and 7.1 mu M. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity -inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis.
Resumo:
In vitro-produced bovine embryos become infected after exposure to bovine Herpesvirus type 5 (BoHV-5), yet no changes in developmental rates, mitochondrial activity and inhibition of apoptosis are detected in comparison to unexposed embryos. Thus, the aim of the present study was to assess the transcription of mitochondria-mediated apoptosis genes using TaqMan real-time polymerase chain reaction. Transcripts of mcl-1, caspase-2, -3, Apaf-1 and Bax genes were measured after exposure to BoHV-5 in vitro. Mitochondrial dehydrogenase activity was evaluated by MIT test and compared between groups of exposed and unexposed embryos, at day 7 of development. The rate of oocyte maturation was assessed by the extrusion of the first polar body. In summary, BoHV-5 exposed embryos retained their viability, mitochondrial dehydrogenase activity and displayed up-regulation of transcription of survival mcl-1 gene and down-regulation of Bax transcription in relation to mitochondria-mediated pathway which might improve embryo viability. These findings demonstrate that BoHV-5 exposed embryos maintain their viability and mitochondrial dehydrogenase activity with no compromise of embryos produced in vitro. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: To evaluate the effect of N-acetylcysteine (NAC) combined with fluid resuscitation on pulmonary cell death in rats induced with controlled hemorrhagic shock (HS). METHODS: Two arteries (MAP calculation and exsanguination) and one vein (treatments) were catheterized in 22 anesthetized rats. Two groups of male albino rats were induced with controlled HS at 35mmHg MAP for 60 min. After this period, the RL group was resuscitated with Ringer's lactate and the RL+NAC group was resuscitated with Ringer's lactate combined with 150mg/Kg NAC. The control group animals were cannulated only. The animals were euthanized after 120 min of fluid resuscitation. Lung tissue samples were collected to evaluate the following: histopathology, TUNEL and imunohistochemical expression of caspase 3. RESULTS: RL showed a greater number of cells stained by TUNEL than RL + NAC, but there was no change in caspase 3 expression in any group. CONCLUSION: N-acetylcysteine associate to fluid resuscitation, after hemorrhagic shock, decreased cell death attenuating lung injury.
Resumo:
Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.
Resumo:
OBJECTIVE: Bevacizumab has been widely used as a vascular endothelial growth factor antagonist in the treatment of retinal vasoproliferative disorders in adults and, more recently, in infants with retinopathy of prematurity. Recently, it has been proposed that vascular endothelial growth factor acts as a protective factor for neurons and glial cells, particularly in developing nervous tissue. The purpose of this study was to investigate the effects of bevacizumab on the developing retinas of juvenile rabbits. METHODS: Juvenile rabbits received bevacizumab intravitreously in one eye; the other eye acted as an untreated control. Slit-lamp and fundoscopic examinations were performed both prior to and seven days after treatment. At the same time, retina samples were analyzed using immunohistochemistry to detect autophagy and apoptosis as well as proliferation and glial reactivity. Morphometric analyses were performed, and the data were analyzed using the Mann-Whitney U test. RESULTS: No clinical abnormalities were observed in either treated or untreated eyes. However, immunohistochemical analyses revealed a reduction in the occurrence of programmed cell death and increases in both proliferation and reactivity in the bevacizumab-treated group compared with the untreated group. CONCLUSIONS: Bevacizumab appears to alter programmed cell death patterns and promote gliosis in the developing retinas of rabbits; therefore, it should be used with caution in developing eyes.
Resumo:
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.
Resumo:
Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.
Resumo:
Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.
Resumo:
Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return.'' In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 mu M of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx +) and Caspase-9-positive (Casp-9 +) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx + (4.6% in control cells; p < 0.01) and 24.9% were Casp-9 + (2.4% in control cells; p < 0.01). Fusion and cleavage were not affected by the use apoptotic cells (p > 0.05). Also, the use of Anx + cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p > 0.05). However, blastocyst formation was affected by the use of Casp-9 + cells (12.3%; p < 0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return'' for apoptosis may be located around activation of Caspase-9.
Resumo:
Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.
Resumo:
Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.