979 resultados para Automotive 3D modeling
Resumo:
At this time, each major automotive market bares its own standards and test procedures to regulate the vehicle green house gases emissions and, thus, fuel consumption. Hence, much are the ways to evaluate the overall efficiency of motor vehicles. The majority of such standards rely on dynamometer cycle tests that appraise only the vehicle as a whole, but fail to assess emissions for each component or sub-system. Once the amount of work generated by the power source of an ICE vehicle to overcome the driving resistance forces is proportional to the energy contained in the required amount of fuel, the power path of the vehicle can be straightforwardly modeled as a set of mechanical systems, and each sub-system evaluated for its share on the total fuel consumption and green house gases emission. This procedure enables the estimation of efficiency gains on the system due to improvement of particular elements on the vehicle's driveline. In this work a simple systematic mechanical model of an arbitrary smallsized hatch back was assembled and total required energy calculated for different regulatory cycles. All the modeling details of the energy balance throughout the system are presented. Afterward, each subsystem was investigated for its role on the fuel consumption and the generated emission quantified. Furthermore, the application of the modeling technique for different sets of sub-systems was introduced. Copyright © 2011 SAE International.
Resumo:
In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)7 barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. © 2013 Elsevier Ltd.
Resumo:
The main objective of this study is to verify the influence of Environmental Management (EM) on Operational Performance (OP) in Brazilian automotive companies, analyzing whether Lean Manufacturing (LM) and Human Resources (HR) interfere in the greening of these companies. Therefore, a conceptual framework listing these concepts was proposed, and three research hypotheses were presented. A questionnaire was elaborated based on this theoretical background and sent to respondents occupying the highest positions in the production/operations areas of Brazilian automotive companies. The data, collected from 75 companies, were analyzed using structural equation modeling. The main results are as follows: (a) the model tested revealed an adequate goodness of fit, showing that overall, the relations proposed between EM and OP and between HR, LM and EM tend to be statistically valid; (b) EM tends to influence OP in a positive and statistically weak manner; (c) LM has a greater influence on EM when compared to the influence HR has over EM; (d) HR has a positive relationship over EM, but the statistical significance of this relationship is less than that of the other evaluated relationships. The originality of this paper lies in its gathering the concepts of EM, LM, HR and OP in a single study, as they generally tend not to be treated jointly. This paper also provided valid empirical evidence for a littlestudied context: the Brazilian automotive sector. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Desenvolvemos a modelagem numérica de dados sintéticos Marine Controlled Source Electromagnetic (MCSEM) usada na exploração de hidrocarbonetos para simples modelos tridimensionais usando computação paralela. Os modelos são constituidos de duas camadas estrati cadas: o mar e o sedimentos encaixantes de um delgado reservatório tridimensional, sobrepostas pelo semi-espaço correspondente ao ar. Neste Trabalho apresentamos uma abordagem tridimensional da técnica dos elementos nitos aplicada ao método MCSEM, usando a formulação da decomposição primária e secundária dos potenciais acoplados magnético e elétrico. Num pós-processamento, os campos eletromagnéticos são calculados a partir dos potenciais espalhados via diferenciação numérica. Exploramos o paralelismo dos dados MCSEM 3D em um levantamento multitransmissor, em que para cada posição do transmissor temos o mesmo processo de cálculos com dados diferentes. Para isso, usamos a biblioteca Message Passing Interface (MPI) e o modelo servidor cliente, onde o processador administrador envia os dados de entradas para os processadores clientes computar a modelagem. Os dados de entrada são formados pelos parâmetros da malha de elementos nitos, dos transmissores e do modelo geoelétrico do reservatório. Esse possui geometria prismática que representa lentes de reservatórios de hidrocarbonetos em águas profundas. Observamos que quando a largura e o comprimento horizontais desses reservatório têm a mesma ordem de grandeza, as resposta in-line são muito semelhantes e conseqüentemente o efeito tridimensional não é detectado. Por sua vez, quando a diferença nos tamanhos da largura e do comprimento do reservatório é signi cativa o efeito 3D é facilmente detectado em medidas in-line na maior dimensão horizontal do reservatório. Para medidas na menor dimensão esse efeito não é detectável, pois, nesse caso o modelo 3D se aproxima de um modelo bidimensional. O paralelismo dos dados é de rápida implementação e processamento. O tempo de execução para a modelagem multitransmissor em ambiente paralelo é equivalente ao tempo de processamento da modelagem para um único transmissor em uma máquina seqüêncial, com o acréscimo do tempo de latência na transmissão de dados entre os nós do cluster, o que justi ca o uso desta metodologia na modelagem e interpretação de dados MCSEM. Devido a reduzida memória (2 Gbytes) em cada processador do cluster do departamento de geofísica da UFPA, apenas modelos muito simples foram executados.
Resumo:
Marine Controlled Source Electromagnetic - mCSEM é um método geofísico eletromagnético que nos últimos dez anos vem sendo usado na prospecção de hidrocarbonetos com bastante êxito. Este método consiste em um dipolo elétrico horizontal (DEH) localizado um pouco acima do assoalho marinho, operando em baixa frequência (0,1-1,0 Hz) e receptores regularmente distribuídos no fundo do mar que captam os campos eletromagnéticos provenientes da difusão de energia gerada pelo dipolo transmissor. Neste trabalho vamos apresentar o problema direto do método mCSEM 3D, propondo soluções numéricas, através do método dos elementos finitos tridimensionais, para modelos geoelétricos mCSEM 3D. Para fins de análise de coerência, os resultados obtidos são comparados com soluções disponíveis na literatura. Em seguida, apresentaremos a inversão de um de seus modelos segundo uma proposta de metodologia de inversão juntamente com a proposta de solução direta para o mCSEM 3D, acima mencionada, realizando assim a inversão de um modelo geoelétrico do mCSEM 3D para duas frequências.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Modelagem em 3D de uma patela humana e análise de esforços utilizando o método dos elementos finitos
Resumo:
Throughout the history of medicine surgeons realized the importance of the patella to the functioning of the knee. The main function of the patella is to increase the mechanical efficiency of the quadriceps tendon and knee extensor mechanism. It was found that 50% to 80% of the fractures without deviation of the patella have the transversal pattern, possibly due to excessive tensile forces applied to the extensor mechanism. The purpose of this study is to analyze the loads to which a patella is submitted during a normal extension movement of knee. This analysis will be done by modeling a 3D patella and subsequent load simulation as, described in medical literature, using the finite element method
Resumo:
Structured AbstractObjectivesTo investigate the 3D morphological variations in 169 temporomandibular ioint (TMJ) condyles, using novel imaging statistical modeling approaches.Setting and sample populationThe Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Cone beam CT scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA, mean age 39.115.7years), 15 subjects at initial consult diagnosis of OA (mean age 44.914.8years), and seven healthy controls (mean age 4312.4years).Materials and methods3D surface models of the condyles were constructed, and homologous correspondent points on each model were established. The statistical framework included Direction-Projection-Permutation (DiProPerm) for testing statistical significance of the differences between healthy controls and the OA groups determined by clinical and radiographic diagnoses.ResultsCondylar morphology in OA and healthy subjects varied widely with categorization from mild to severe bone degeneration or overgrowth. DiProPerm statistics supported a significant difference between the healthy control group and the initial diagnosis of OA group (t=6.6, empirical p-value=0.006) and between healthy and long-term diagnosis of OA group (t=7.2, empirical p-value=0). Compared with healthy controls, the average condyle in OA subjects was significantly smaller in all dimensions, except its anterior surface, even in subjects with initial diagnosis of OA.ConclusionThis new statistical modeling of condylar morphology allows the development of more targeted classifications of this condition than previously possible.
Resumo:
The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.
Resumo:
[ES] Se analizan las posibilidades del Image based modeling (IBM), como técnica de escaneado 3D de bajo coste para la modelización de inscripciones romanas, a partir del trabajo realizado en el Museo Arqueológico Nacional de Madrid sobre una amplia tipología de soportes epigráficos (piedra, bronce, arcilla), con resultados óptimos para la catalogación, estudio y difusión de este tipo de documentación histórica. Los resultados obtenidos permiten obtener inscripciones romanas en 3D que se pueden incorporar a los proyectos de epigrafía digital en curso, permitiendo su acceso a través de ordenadores y dispositivos móviles, sin coste añadido para los investigadores.
Resumo:
In gasoline Port Fuel Injection (PFI) and Direct Injection (GDI) internal combustion engines, the liquid fuel might be injected into a gaseous ambient in a superheated state, resulting in flash boiling of the fuel. The importance to investigate and predict such a process is due to the influence it has on the liquid fuel atomization and vaporization and thus on combustion, with direct implications on engine performances and exhaust gas emissions. The topic of the present PhD research involves the numerical analysis of the behaviour of the superheated fuel during the injection process, in high pressure injection systems like the ones equipping GDI engines. Particular emphasis is on the investigation of the effects of the fuel superheating degree on atomization dynamics and spray characteristics. The present work is a look at the flash evaporation and flash boiling modeling, from an engineering point of view, addressed to keep the complex physics involved as simple as possible, however capturing the main characteristics of a superheated fuel injection.