953 resultados para Automatic control.
Resumo:
Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007). The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.
Resumo:
The motion of marine vessels has traditionally been studied using two different approaches: manoeuvring and seakeeping. These two approaches use different reference frames and coordinate systems to describe the motion. This paper derives the kinematic models that characterize the transformation of motion variables (position, velocity, accelerations) and forces between the different coordinate systems used in these theories. The derivations hereby presented are done in terms of the formalism adopted in robotics. The advantage of this formulation is the use of matrix notation and operations. As an application, the transformation of linear equations of motion used in seakeeping into body-fixed coordinates is considered for both zero and forward speed.
Resumo:
This paper presents a nonlinear observer for estimating parameters associated with the restoring term of a roll motion model of a marine vessel in longitudinal waves. Changes in restoring, also referred to as transverse stability, can be the result of changes in the vessel's centre of gravity due to, for example, water on deck and also in changes in the buoyancy triggered by variations in the water-plane area produced by longitudinal waves -- propagating along the fore-aft direction along the hull. These variations in the restoring can change dramatically the dynamics of the roll motion leading to dangerous resonance. Therefore, it is of interest to estimate and detect such changes.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.
Resumo:
This paper presents the application of a statistical method for model structure selection of lift-drag and viscous damping components in ship manoeuvring models. The damping model is posed as a family of linear stochastic models, which is postulated based on previous work in the literature. Then a nested test of hypothesis problem is considered. The testing reduces to a recursive comparison of two competing models, for which optimal tests in the Neyman sense exist. The method yields a preferred model structure and its initial parameter estimates. Alternatively, the method can give a reduced set of likely models. Using simulated data we study how the selection method performs when there is both uncorrelated and correlated noise in the measurements. The first case is related to instrumentation noise, whereas the second case is related to spurious wave-induced motion often present during sea trials. We then consider the model structure selection of a modern high-speed trimaran ferry from full scale trial data.
Resumo:
Commodity price modeling is normally approached in terms of structural time-series models, in which the different components (states) have a financial interpretation. The parameters of these models can be estimated using maximum likelihood. This approach results in a non-linear parameter estimation problem and thus a key issue is how to obtain reliable initial estimates. In this paper, we focus on the initial parameter estimation problem for the Schwartz-Smith two-factor model commonly used in asset valuation. We propose the use of a two-step method. The first step considers a univariate model based only on the spot price and uses a transfer function model to obtain initial estimates of the fundamental parameters. The second step uses the estimates obtained in the first step to initialize a re-parameterized state-space-innovations based estimator, which includes information related to future prices. The second step refines the estimates obtained in the first step and also gives estimates of the remaining parameters in the model. This paper is part tutorial in nature and gives an introduction to aspects of commodity price modeling and the associated parameter estimation problem.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.
Resumo:
This paper proposes a physically motivated reappraisal of manoeuvring models for ships and presents a new model developed from first principles by application of low aspect-ratio aerodynamic theory and Lagrangian mechanics. The coefficients of the model are shown to be related to physical processes, and validation is presented using the results from a planar motion mechanism dataset.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
The development of offshore oil and gas fields require the placement of different equipment on the sea floor. This is done by deploying the equipment from vessels operating in dynamic positioning on the surface. The deployment operation has different phases, and in higher sea states, it may require wave-load synchronization, when the load is going through the splash zone, and heave compensation when the load is close to the sea floor. In this paper, we analyse the performance of a particular type of hardware operating in a heave compensation mode. We derive a comprehensive model, analyse limits of performance and evaluate a control strategy.
Resumo:
In this paper, a method of thrust allocation based on a linearly constrained quadratic cost function capable of handling rotating azimuths is presented. The problem formulation accounts for magnitude and rate constraints on both thruster forces and azimuth angles. The advantage of this formulation is that the solution can be found with a finite number of iterations for each time step. Experiments with a model ship are used to validate the thrust allocation system.
Resumo:
Wireless adhoc networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem - the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node. In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels, where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information (CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a c- - orresponding factored class of control poli.
Resumo:
In this paper we study two problems in feedback stabilization. The first is the simultaneous stabilization problem, which can be stated as follows. Given plantsG_{0}, G_{1},..., G_{l}, does there exist a single compensatorCthat stabilizes all of them? The second is that of stabilization by a stable compensator, or more generally, a "least unstable" compensator. Given a plantG, we would like to know whether or not there exists a stable compensatorCthat stabilizesG; if not, what is the smallest number of right half-place poles (counted according to their McMillan degree) that any stabilizing compensator must have? We show that the two problems are equivalent in the following sense. The problem of simultaneously stabilizingl + 1plants can be reduced to the problem of simultaneously stabilizinglplants using a stable compensator, which in turn can be stated as the following purely algebraic problem. Given2lmatricesA_{1}, ..., A_{l}, B_{1}, ..., B_{l}, whereA_{i}, B_{i}are right-coprime for alli, does there exist a matrixMsuch thatA_{i} + MB_{i}, is unimodular for alli?Conversely, the problem of simultaneously stabilizinglplants using a stable compensator can be formulated as one of simultaneously stabilizingl + 1plants. The problem of determining whether or not there exists anMsuch thatA + BMis unimodular, given a right-coprime pair (A, B), turns out to be a special case of a question concerning a matrix division algorithm in a proper Euclidean domain. We give an answer to this question, and we believe this result might be of some independent interest. We show that, given twon times mplantsG_{0} and G_{1}we can generically stabilize them simultaneously provided eithernormis greater than one. In contrast, simultaneous stabilizability, of two single-input-single-output plants, g0and g1, is not generic.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.