972 resultados para Automatic Image Annotation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for automatic identification of dust devils tracks in MOC NA and HiRISE images of Mars. The method is based on Mathematical Morphology and is able to successfully process those images despite their difference in spatial resolution or size of the scene. A dataset of 200 images from the surface of Mars representative of the diversity of those track features was considered for developing, testing and evaluating our method, confronting the outputs with reference images made manually. Analysis showed a mean accuracy of about 92%. We also give some examples on how to use the results to get information about dust devils, namelly mean width, main direction of movement and coverage per scene. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to analyze the color alterations performed by the CIE L*a*b* system in the digital imaging of shade guide tabs, which were obtained photographically according to the automatic and manual modes. This study also sought to examine the observers' agreement in quantifying the coordinates. Four Vita Lumin Vaccum shade guide tabs were used: A3.5, B1, B3 and C4. An EOS Canon digital camera was used to record the digital images of the shade tabs, and the images were processed using Adobe Photoshop software. A total of 80 observations (five replicates of each shade according to two observers in two modes, specifically, automatic and manual) were obtained, leading to color values of L*, a* and b*. The color difference (AE) between the modes was calculated and classified as either clinically acceptable or unacceptable. The results indicated that there was agreement between the two observers in obtaining the L*, a* and b* values related to all guides. However, the B1, B3, and C4 shade tabs had AE values classified as clinically acceptable (Delta E = 0.44, Delta E = 2.04 and Delta E = 2.69, respectively). The A3.5 shade tab had a AE value classified as clinically unacceptable (Delta E = 4.17), as it presented higher values for luminosity in the automatic mode (L* = 54.0) than in the manual mode (L* = 50.6). It was concluded that the B1, B3 and C4 shade tabs can be used at any of the modes in digital camera (manual or automatic), which was a different finding from that observed for the A3.5 shade tab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the role of automatic estimation of crowd density and its importance for the automatic monitoring of areas where crowds are expected to be present. A new technique is proposed which is able to estimate densities ranging from very low to very high concentration of people, which is a difficult problem because in a crowd only parts of people's body appear. The new technique is based on the differences of texture patterns of the images of crowds. Images of low density crowds tend to present coarse textures, while images of dense crowds tend to present fine textures. The image pixels are classified in different texture classes and statistics of such classes are used to estimate the number of people. The texture classification and the estimation of people density are carried out by means of self organising neural networks. Results obtained respectively to the estimation of the number of people in a specific area of Liverpool Street Railway Station in London (UK) are presented. (C) 1998 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image orientation is a basic problem in Digital Photogrammetry. While interior and relative orientations were succesfully automated, the same can not be said about absolute orientation. This process can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features in the object space and its homologous in the image space. A build-in self-diagnosis is also used in this method, that is based on the implementation of data snooping statistic test in the process of spatial resection, using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human beings perceive images through their properties, like colour, shape, size, and texture. Texture is a fertile source of information about the physical environment. Images of low density crowds tend to present coarse textures, while images of dense crowds tend to present fine textures. This paper describes a new technique for automatic estimation of crowd density, which is a part of the problem of automatic crowd monitoring, using texture information based on grey-level transition probabilities on digitised images. Crowd density feature vectors are extracted from such images and used by a self organising neural network which is responsible for the crowd density estimation. Results obtained respectively to the estimation of the number of people in a specific area of Liverpool Street Railway Station in London (UK) are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a methodology for optimized allocation of switches for automatic load transfer in distribution systems in order to improve the reliability indexes by restoring such systems which present voltage classes of 23 to 35 kV and radial topology. The automatic switches must be allocated on the system in order to transfer load remotely among the sources at the substations. The problem of switch allocation is formulated as nonlinear constrained mixed integer programming model subject to a set of economical and physical constraints. A dedicated Tabu Search (TS) algorithm is proposed to solve this model. The proposed methodology is tested for a large real-life distribution system. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land use classification has been paramount in the last years, since we can identify illegal land use and also to monitor deforesting areas. Although one can find several research works in the literature that address this problem, we propose here the land use recognition by means of Optimum-Path Forest Clustering (OPF), which has never been applied to this context up to date. Experiments among Optimum-Path Forest, Mean Shift and K-Means demonstrated the robustness of OPF for automatic land use classification of images obtained by CBERS-2B and Ikonos-2 satellites. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that γ 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of γ 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. © 2012 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.