959 resultados para Autoimmune Myasthenia-gravis
Resumo:
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, due to the immune-mediated destruction of pancreatic β-cells, whose incidence has been steadily increasing during the last decades. Insulin replacement therapy can treat T1DM, which, however, is still associated with substantial morbidity and mortality. For this reason, great effort is being put into developing strategies that could eventually prevent and/or cure this disease. These strategies are mainly focused on blocking the immune system from attacking β-cells together with functional islet restoration either by regeneration or transplantation. Recent experimental evidences suggest that TNFrelated apoptosis-inducing ligand (TRAIL), which is an immune system modulator protein, could represent an interesting candidate for the cure for T1DM and/or its complications. Here we review the evidences on the potential role of TRAIL in the management of T1DM.
Resumo:
T helper type 17 (Th17) cells play an important pathogenic function in autoimmune diseases; their regulation, however, is not well understood. We show that the expression of a tumor necrosis factor receptor family member, death receptor 3 (DR3; also known as TNFRSF25), is selectively elevated in Th17 cells, and that TL1A, its cognate ligand, can promote the proliferation of effector Th17 cells. To further investigate the role of the TL1A-DR3 pathway in Th17 regulation, we generated a TL1A-deficient mouse and found that TL1A(-/-) dendritic cells exhibited a reduced capacity in supporting Th17 differentiation and proliferation. Consistent with these data, TL1A(-/-) animals displayed decreased clinical severity in experimental autoimmune encephalomyelitis (EAE). Finally, we demonstrated that during EAE disease progression, TL1A was required for the optimal differentiation as well as effector function of Th17 cells. These observations thus establish an important role of the TL1A-DR3 pathway in promoting Th17 cell function and Th17-mediated autoimmune disease.
Resumo:
Objectives: Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I) suffer from chronic candidosis caused mainly by Candida albicans, and repeated courses of azole antifungals have led to the development of resistance in the APECED patient population in Finland. The aim of our study was to address whether the patients are persistently colonized with the same or genetically closely related strains, whether epidemic strains are present and which molecular mechanisms account for azole resistance. Methods: Sets of C. albicans (n?=?19) isolates from nine APECED patients reported with decreased susceptibility to fluconazole isolated up to 9 years apart were included. The strains were typed by multilocus sequence typing. CDR1/2, MDR1 and ERG11 mRNA expression was analysed by northern blotting and Cdr1, Cdr2 and Mdr1 protein expression by western blotting, and TAC1 and ERG11 genes were sequenced. Results: All seven patients with multiple C. albicans isolates analysed were persistently colonized with the same or a genetically closely related strain for a mean of 5 years. All patients were colonized with different strains and no epidemic strains were found. The major molecular mechanisms behind the azole resistance were mutations in TAC1 contributing to overexpression of CDR1 and CDR2. Six new TAC1 mutations were found, one of which (N740S) is likely to be a gain-of-function mutation. Most isolates were found to have gained multiple TAC1 and ERG11 point mutations. Conclusions: Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations occur within strains, leading to the development of azole-resistant isolates.
Resumo:
Les lymphocytes T CD4+ sont connus pour leur potentiel d'acquisition de fragments membraneux de cellules présentatrices d'antigène (CPA) dans un processus nommé trogocytose. Ce phénomène est observé lors de l'interaction entre le lymphocyte T CD4+ antigène-spécifique et la CPA lors de la présentation de l'antigène en question, et dépend donc de la spécificité du lymphocyte T CD4+. L'identification des lymphocytes T CD4+ sujets à la trogocytose en co-culture avec des CPA chargées d'un antigène connu permet d'enrichir des lymphocytes T antigène-spécifiques sans connaître leur spécificité exacte ou leur profil de production de cytokines. Dans cette étude, nous avons donc cherché à évaluer l'utilité de cette méthode dans l'identification de la spécificité des lymphocytes T effecteurs et régulateurs lors de l'inflammation auto-immune avec des spécificités souvent inconnues. La trogocytose a démontré son efficacité dans la détection de lymphocytes T réactifs à la protéine basique de myéline in vitro ainsi qu'ex vivo après immunisation. Cependant, le potentiel de la trogocytose à identifier des lymphocytes T régulateurs antigène-spécifiques est limité par le fait que les lymphocytes T régulateurs Foxp3+ montrent un taux élevé de manière constitutive de trogocytose comparé aux lymphocytes T Foxp3-, Un taux localement élevé de trogocytose lors d'un état inflammatoire (observé au niveau des lymphocytes T effecteurs et régulateurs isolés du système nerveux central enflammé) empêche l'utilisation de la trogocytose dans l'évaluation de la réactivité antigénique de cellules extraites d'un site inflammatoire. Nos résultats montrent la possibilité d'enrichir des lymphocytes T conventionnels antigène- réactifs en périphérie par détection au moyen de la trogocytose. Nous avons aussi montré les limitations de cette méthode dans sa capacité d'identifier des lymphocytes T effecteurs et régulateurs antigène- réactifs extraits de sites inflammatoires. Le potentiel de trogocytose élevé dans les sites d'inflammation soulève la question de la signification biologique de ce phénomène dans l'inflammation, dans la suppression médiée par les lymphocytes T régulateurs et dans le maintien de la tolérance immunologique dans des états de santé variables.
Resumo:
Experimental autoimmune myocarditis (EAM) is a CD4(+) T-cell-mediated model of human inflammatory dilated cardiomyopathies. Heart-specific CD4(+) T-cell activation is dependent on autoantigens presented by MHC class II (MHCII) molecules expressed on professional APCs. In this study, we addressed the role of inflammation-induced MHCII expression by cardiac nonhematopoietic cells on EAM development. EAM was induced in susceptible mice lacking inducible expression of MHCII molecules on all nonhematopoietic cells (pIV-/- K14 class II transactivator (CIITA) transgenic (Tg) mice) by immunization with α-myosin heavy chain peptide in CFA. Lack of inducible nonhematopoietic MHCII expression in pIV-/- K14 CIITA Tg mice conferred EAM resistance. In contrast, cardiac pathology was induced in WT and heterozygous mice, and correlated with elevated cardiac endothelial MHCII expression. Control mice with myocarditis displayed an increase in infiltrating CD4(+) T cells and in expression of IFN-γ, which is the major driver of nonhematopoietic MHCII expression. Mechanistically, IFN-γ neutralization in WT mice shortly before disease onset resulted in reduced cardiac MHCII expression and pathology. These findings reveal a previously overlooked contribution of IFN-γ to induce endothelial MHCII expression in the heart and to progress cardiac pathology during myocarditis.
Resumo:
Abstract We present a case of immunoglobulin G4 (IgG4)-related disease with pancreatic and extrapancreatic involvement, including the biliary and renal systems. Given the importance of imaging methods for the diagnosis of IgG4-related disease and its differentiation from pancreatic adenocarcinoma, we emphasize important abdominal computed tomography and magnetic resonance imaging findings related to this recently recognized systemic autoimmune disease.
Resumo:
The aim of this thesis was to develop new herpes simplex virus (HSV) vectors for gene therapy of experimental autoimmune encephalomyelitis (EAE), the principal model of multiple sclerosis (MS), and to study the pathogenesis of wild-type HSV-1 and HSV-1 vectors in vivo. By introducing potential immunomodulatory factors into mice with EAE we strived to develop therapies and possibly find molecules improving recovery from EAE. We aimed at altering the immune response by inducing favorable Th2-type cytokines, thus shifting the immune response from a Th1- or a Th17-response. Our HSV vector expressing interleukin (IL)-5 modulated the cytokine responses, decreased inflammation and alleviated EAE. The use of a novel method, bacterial artificial chromosome (BAC), for engineering recombinant HSV facilitated the construction of a new vector expressing leukemia inhibitory factor (LIF). LIF is a neurotropic cytokine with broad functions in the central nervous system (CNS). LIF promotes oligodendrocyte maturation and decreases demyelination and oligodendrocyte loss. The BAC-derived HSV-LIF vector alleviated the clinical symptoms, induced a higher number of oligodendrocytes and modulated T cell responses. By administering HSV via different infection routes, e.g. peripherally via the nose or eye, or intracranially to the brain, the effect of the immune response on HSV spread at different points of the natural infection route was studied. The intranasal infection was an effective delivery route of HSV to the trigeminal ganglion and CNS, whereas corneal infection displayed limited spread. The corneal and intranasal infections induced different peripheral immune responses, which might explain the observed differences in viral spread.
Resumo:
Evidence is accumulating that Th1 cells play an important role in the development of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), whereas Th2 cells contribute to recovery from disease. A major determinant in the development of Th1 and Th2 cells is the type of antigen-presenting cell (APC) involved and its functional characteristics, e.g., the production of interleukin-12. Therefore, modulation of APC might interfere with the development of Th1 type responses and as such be beneficial for MS and EAE. The potential of cytokines, in particular interleukin-10, and glucocorticoids to exert a selective effect on APC, and as a consequence to affect the Th1-Th2 balance in EAE, is discussed
Resumo:
Studies concerning the antigenicity of thyroglobulin fragments allow the characterization of the epitopes but do not consider the role of heavier antigenic fragments that could result in vivo from the action of endoproteases. Here we assess the relative importance of the fragments obtained from thyroglobulin by limited proteolysis with trypsin and compare by immunoblotting their reactivity to serum from patients with autoimmune (Graves' disease and Hashimoto's thyroiditis) and non-autoimmune (subacute thyroiditis) disease. The results showed no difference in frequency of recognition of any peptide by sera from patients with autoimmune thyroiditis. In contrast, sera from patients with subacute thyroiditis reacted more frequently with a peptide of 80 kDa. These results suggest the presence of antibody subpopulations directed at fragments produced in vivo by enzymatic cleavage of thyroglobulin. This fragment and antibodies to it may represent markers for subacute thyroiditis.
Resumo:
Fibronectin (FN), a large family of plasma and extracellular matrix (ECM) glycoproteins, plays an important role in leukocyte migration. In normal central nervous system (CNS), a fine and delicate mesh of FN is virtually restricted to the basal membrane of cerebral blood vessels and to the glial limitans externa. Experimental autoimmune encephalomyelitis (EAE), an inflammatory CNS demyelinating disease, was induced in Lewis rats with a spinal cord homogenate. During the preclinical phase and the onset of the disease, marked immunolabelling was observed on the endothelial luminal surface and basal lamina of spinal cord and brainstem microvasculature. In the paralytic phase, a discrete labelling was evident in blood vessels of spinal cord and brainstem associated or not with an inflammatory infiltrate. Conversely, intense immunolabelling was present in cerebral and cerebellar blood vessels, which were still free from inflammatory cuffs. Shortly after clinical recovery minimal labelling was observed in a few blood vessels. Brainstem and spinal cord returned to normal, but numerous inflammatory foci and demyelination were still evident near the ventricle walls, in the cerebral cortex and in the cerebellum. Intense expression of FN in brain vessels ascending from the spinal cord towards the encephalon preceded the appearance of inflammatory cells but faded away after the establishment of the inflammatory cuff. These results indicate an important role for FN in the pathogenesis of CNS inflammatory demyelinating events occurring during EAE.
Resumo:
Although the role of interleukin-2 (IL-2) and interferon gamma (gIFN) is still poorly understood in hyperthyroid diseases, it is reasonable to assume that these cytokines may be present at higher levels in Graves' disease (GD) than in other primarily non-autoimmune thyroid diseases. In order to look for an easy method to distinguish GD from primarily non-autoimmune causes of hyperthyroidism, we compared 13 healthy individuals with 21 treated and untreated hyperthyroid GD patients and with 19 patients with hyperthyroidism due to other etiologies: 7 cases of multinodular goiter, 5 cases of excessive hormone replacement and 7 cases of amiodarone-associated hyperthyroidism. All patients presented low TSH levels and a dubious clinical thyroid state. We found a good correlation between TSH and serum IL-2 levels (r = 0.56; P<0.01). Serum IL-2 (P<0.01) and gIFN (P<0.01) levels were lower in the hyperthyroid group of patients than in control subjects, suggesting a depressed TH1 pattern in the T-cell subset of hyperthyroid patients. GD had normal IL-2 levels, while patients with other forms of thyrotoxicosis presented decreased IL-2 levels (P<0.05). There was no difference between treated and untreated GD patients. We suggest that the direct measurement of serum IL-2 level may help to confirm hyperthyroidism caused by GD.
Resumo:
Susceptibility to experimental autoimmune uveitis (EAU) in inbred mice has been associated with a dominant Th1 response. Elevated anti-inter-photoreceptor retinoid-binding protein (anti-IRBP) IgG2a/IgG1 antibody ratios have been implicated as candidate markers to predict disease severity. In the present study, both the anti-IRBP antibody isotype and severity of EAU phenotypes were examined in 4 non-isogenic genetically selected mouse lines to determine if they can be used as general markers of disease. Mice between 8 and 12 weeks old selected for high (H III) or low (L III) antibody response and for maximum (AIR MAX) or minimum (AIR MIN) acute inflammatory reaction (AIR) were immunized with IRBP. Each experiment was performed with at least 5 mice per group. EAU was evaluated by histopathology 21 days after immunization and the minimal criterion was inflammatory cell infiltration of the ciliary body, choroid and retina. Serum IgG1- and IgG2a-specific antibodies were determined by ELISA. EAU was graded by histological examination of the enucleated eyes. The incidence of EAU was lower in AIR MIN mice whereas in the other strains approximately 40% of the animals developed the disease. Low responder animals did not produce anti-IRBP IgG2a antibodies or interferon-gamma. No correlation was observed between susceptibility to EAU and anti-IRBP isotype profiles. Susceptibility to EAU is related to the intrinsic capacity to mount higher inflammatory reactions and increased production of anti-IRBP IgG2a isotype is not necessarily a marker of this immunologic profile.
Resumo:
Scutellaria baicalensis Georgi is one of the important medicinal herbs widely used for the treatment of various inflammatory diseases in Asia. Baicalin (BA) is a bioactive anti-inflammatory flavone found abundantly in Scutellaria baicalensis Georgi. To explore the therapeutic potential of BA, we examined the effects of systemic administration of the flavone (5 and 10 mg/kg, ip) on relapsing/remitting experimental autoimmune encephalomyelitis (EAE) induced by proteolipid protein 139-151 in SJL/J mice, an experimental model of multiple sclerosis. The mice treated with PBS or BA at day -1 and for 3 consecutive days were observed daily for clinical signs of disease up to 60 days after immunization. In the PBS-EAE group, neurological scores were: incidence (100%), mean day of onset (8.0 ± 0.73), peak clinical score (3.0 ± 0.4), and cumulative disease index (141.8 ± 19.4). In the BA-EAE group (5 or 10 mg kg-1 day-1, respectively), incidence (95 or 90%), mean day of onset (9.0 ± 0.80 or 9.2 ± 0.75; P = 0.000), peak clinical score (2.2 ± 0.3 or 2.0 ± 0.3; P = 0.000), and cumulative disease index (75.9 ± 10.1 or 62.9 ± 8.4; P = 0.000) decreased, accompanied by the histopathological findings (decrease of dense mononuclear infiltration surrounding vascellum) for the spinal cord. Additionally, the in vitro effects of BA (5, 10, and 25 µM) on mononuclear cells collected from popliteal and inguinal lymph nodes of day-10 EAE mice were evaluated using an MTT reduction assay for cell proliferation, and ELISA to measure IFN-g and IL-4 cytokines. Compared with the control group, BA caused an increase in IL-4 (EAE-DMSO: 3.56 ± 0.42 pg/mL vs EAE-BA (5, 10, and 25 µM): 6.03 ± 1.1, 7.83 ± 0.65, 10.54 ± 1.13 pg/mL, respectively; P < 0.001); but inhibited IFN-g (EAE-DMSO: 485.76 ± 25.13 pg/mL vs EAE-BA (5, 10, and 25 µM): 87.08 ± 9.24, 36.27 ± 5.44, 19.18 ± 2.93 pg/mL, respectively; P < 0.001) and the proliferation of mononuclear cells (EAE-DMSO: 0.73 ± 0.021 vs EAE-BA (5, 10, and 25 µM): 0.41 ± 0.015, 0.31 ± 0.018, 0.21 ± 0.11, respectively; P < 0.001) in a concentration-dependent manner. The results suggest that BA might be effective in the treatment of multiple sclerosis.