806 resultados para Australian Research Council
Resumo:
The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b. NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogale xanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n = 22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Dactylotrochus cervicornis (= Tridacophyllia cervicornis Moseley, 1881), which occurs in Indo-Pacific waters between 73 and 852 m, was originally described as an astraeid but was later transferred to the Caryophylliidae. Assumed to be solitary, this species has no stolons and only one elongated fossa, and is unique among azooxanthellate scleractinians in often displaying extremely long thecal extensions that are septate and digitiform. Based on both molecular phylogenetic analyses (partial mitochondrial CO1 and 16S rDNA, and partial nuclear 28S rDNA) and morphological characteristics, we propose the transfer of D. cervicornis from the Caryophylliidae to the Agariciidae, making it the first extant representative of the latter family that is solitary and from deep water (azooxanthellate). The basal position of D. cervicornis within the agariciids implied by our analyses strengthens the case for inclusion of fossil species that were solitary, such as Trochoseris, in this family and suggests that the ancestor of this scleractinian family, extant members of which are predominantly colonial and zooxanthellate, may have been solitary and azooxanthellate.
Resumo:
Background: Chronic diseases are the leading cause of premature death and disability in the world with overnutrition a primary cause of diet-related ill health. Excess energy intake, saturated fat, sugar, and salt derived from processed foods are a major cause of disease burden. Our objective is to compare the nutritional composition of processed foods between countries, between food companies, and over time. Design: Surveys of processed foods will be done in each participating country using a standardized methodology. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from the product label, or from the manufacturer. Foods will be categorized into 14 groups and 45 categories for the primary analyses which will compare mean levels of nutrients at baseline and over time. Initial commitments to collaboration have been obtained from 21 countries. Conclusions: This collaborative approach to the collation and sharing of data will enable objective and transparent tracking of processed food composition around the world. The information collected will support government and food industry efforts to improve the nutrient composition of processed foods around the world.
Resumo:
This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South Telescope, an additional 50 GC and ultra-compact dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 R-e similar to 30 kpc) from the centre of NGC 3923 and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within similar to 130 arcsec. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/L-V = 8 to 26) at large galactocentric radii is required to explain this observation. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5(-4.5)(+7.3) per cent of the mass within 1 R-e, 41.2(-10.6)(+18.2) per cent within 2 R-e and 75.6(-16.8)(+15.4) per cent within the radius of our last kinematic tracer at 6.9 R-e. The total dynamical mass within this radius is found to be 1.5(-0.25)(+0.4) x 10(12) M-circle dot. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.
Resumo:
We present results from an analysis of stellar population parameters for 7132 galaxies in the 6dF Galaxy Survey Fundamental Plane (FP) sample. We bin the galaxies along the axes, v1, v2 and v3, of the tri-variate Gaussian to which we have fitted the galaxy distribution in effective radius, surface brightness and central velocity dispersion (FP space), and compute median values of stellar age, [Fe/H], [Z/H] and [a/Fe]. We determine the directions of the vectors in FP space along which each of the binned stellar population parameters vary most strongly. In contrast to previous work, we find stellar population trends not just with velocity dispersion and FP residual, but with radius and surface brightness as well. The most remarkable finding is that the stellar population parameters vary through the plane (v1 direction) and across the plane (v3 direction), but show no variation at all along the plane (v2 direction). The v2 direction in FP space roughly corresponds to luminosity density. We interpret a galaxys position along this vector as being closely tied to its merger history, such that early-type galaxies with lower luminosity density are more likely to have undergone major mergers. This conclusion is reinforced by an examination of the simulations of Kobayashi, which show clear trends of merger history with v2.
Resumo:
Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Early progressive nonfluent aphasia (PNFA) may be difficult to differentiate from semantic dementia (SD) in a nonspecialist setting. There are descriptions of the clinical and neuropsychological profiles of patients with PNFA and SD but few systematic comparisons. Method: We compared the performance of groups with SD (n = 27) and PNFA (n = 16) with comparable ages, education, disease duration, and severity of dementia as measured by the Clinical Dementia Rating Scale on a comprehensive neuropsychological battery. Principal components analysis and intergroup comparisons were used. Results: A 5-factor solution accounted for 78.4% of the total variance with good separation of neuropsychological variables. As expected, both groups were anomic with preserved visuospatial function and mental speed. Patients with SD had lower scores on comprehension-based semantic tests and better performance on verbal working memory and phonological processing tasks. The opposite pattern was found in the PNFA group. Conclusions: Neuropsychological tests that examine verbal and nonverbal semantic associations, verbal working memory, and phonological processing are the most helpful for distinguishing between PNFA and SD.
Resumo:
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.
Resumo:
The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E-nu between 10(17) eV and 10(20) eV from point-like sources across the sky south of +55 degrees and north of -65 degrees declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of similar to 3.5 years of a full surface detector array for the Earth-skimming channel and similar to 2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k(PS) . E-nu(-2). from a point-like source, 90% confidence level upper limits for k(PS) at the level of approximate to 5x10(-7) and 2.5x10(-6) GeV cm(-2) s(-1) have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.
Resumo:
A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 degrees to +15 degrees in declination using four different energy ranges above 1 EeV (10(18) eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.
Resumo:
Well determined radial velocities and abundances are essential for analyzing the properties of the globular cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context, this work provides new radial velocities and abundances for twenty Milky Way globular clusters which lack or have poorly known values for these quantities. The radial velocities and abundances are derived from spectra obtained at the Ca II triplet using the FORS2 imager and spectrograph at the VLT, calibrated with spectra of red giants in a number of clusters with well determined abundances. For about half of the clusters in our sample we present significant revisions of the existing velocities or abundances, or both. We also confirm the existence of a sizable abundance spread in the globular cluster M 54, which lies at the center of the Sagittarius dwarf galaxy. In addition evidence is provided for the existence of a small intrinsic internal abundance spread (sigma[Fe/H](int) approximate to 0.11-0.14 dex, similar to that of M 54) in the luminous distant globular cluster NGC 5824. This cluster thus joins the small number of Galactic globular clusters known to possess internal metallicity ([Fe/H]) spreads.
Resumo:
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.
Resumo:
Southern Madagascar is the core of a >1 million km(2) Gondwanan metasedimentary belt that forms much of the southern East African Orogen of eastern Africa, Madagascar, southern India and Sri Lanka. Here the Vohibory Series yielded U-Pb isotopic data from detrital zircon cores that indicate that it was deposited in the latest Tonian to late Cryogenian (between -900 and 640 Ma). The deposition of the Graphite and Androyen Series protoliths is poorly constrained to between the late Palaeoproterozoic and the Cambrian (similar to 1830-530 Ma). The Vohibory Series protoliths were sourced from very restricted-aged sources with a maximum age range between 910 and 760 Ma. The Androyen and Graphite Series protoliths were sourced from Palaeoproterozoic rocks ranging in age between 2300 and 1800 Ma. The best evidence of the timing of metamorphism in the Vohibory Series is a weighted mean Pb-206/U-238 age of 642 +/- 8 Ma from 3 analyses of zircon from sample M03-01. A considerably younger Pb-206/U-238 metamorphic age of 531 +/- 7 Ma is produced from 10 analyses of zircon from sample M03-28 in the Androyen Series. This similar to 110 Ma difference in age is correlated with the early East African Orogeny affecting the west of Madagascar along with its type area in East Africa, whereas the Cambrian Malagasy Orogeny affected the east of Madagascar and southern India during the final suturing of the Mozambique Ocean. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.