992 resultados para Atomic physics
Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition
Resumo:
We report on a large improvement in the wetting of Al 2O 3 thin films grown by un-seeded atomic layer deposition on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al 2O 3/graphene stack is then transferred to SiO 2 by standard methods. © 2012 American Institute of Physics.
Resumo:
The structure, formation energy, and energy levels of the various oxygen vacancies in Ta2O5 have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications. © 2014 AIP Publishing LLC.
Resumo:
We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.
Resumo:
Atomic hydrogen assisted molecular beam epitaxy (MBE) is a novel type of epitaxial growth of nanostructures. The GaAs (311)A surface naturally forms one-dimensional step arrays by step bunching along the direction of (-233) and the space period is around 40nm. The step arrays extend over several mum without displacement. The InGaAs quantum wire arrays are grown on the step arrays as the basis. Our results may prompt further development of more uniform quantum wire and quantum dot arrays.
Resumo:
A constant amount of Ge was deposited on strained GexSi1-x layers of approximately the same thickness but with different alloy compositions, ranging from x = 0.06 to x = 0.19. From their atomic-force-microscopy images, we found that both the size and density of Ge islands increased with the Ge composition of the strained layer. By conservation of mass, this implies that these islands must incorporate material from the underlying strained layer. (C) 2000 American Institute of Physics. [S0003-6951(00)03529-4].