929 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
Resumo:
This paper investigates what has caused output and inflation volatility to fall in the USusing a small scale structural model using Bayesian techniques and rolling samples. Thereare instabilities in the posterior of the parameters describing the private sector, the policyrule and the standard deviation of the shocks. Results are robust to the specification ofthe policy rule. Changes in the parameters describing the private sector are the largest,but those of the policy rule and the covariance matrix of the shocks explain the changes most.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
This paper introduces a mixture model based on the beta distribution, without preestablishedmeans and variances, to analyze a large set of Beauty-Contest data obtainedfrom diverse groups of experiments (Bosch-Domenech et al. 2002). This model gives a bettert of the experimental data, and more precision to the hypothesis that a large proportionof individuals follow a common pattern of reasoning, described as iterated best reply (degenerate),than mixture models based on the normal distribution. The analysis shows thatthe means of the distributions across the groups of experiments are pretty stable, while theproportions of choices at dierent levels of reasoning vary across groups.
Resumo:
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.
Resumo:
Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...
Resumo:
This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.
Resumo:
WDM (Wavelength-Division Multiplexing) optiset verkot on tällä hetkellä suosituin tapa isojen määrän tietojen siirtämiseen. Jokaiselle liittymälle määrätään reitin ja aallonpituus joka linkin varten. Tarvittavan reitin ja aallon pituuden löytäminen kutsutaan RWA-ongelmaksi. Tämän työn kuvaa mahdollisia kustannuksen mallein ratkaisuja RWA-ongelmaan. Olemassa on paljon erilaisia optimoinnin tavoitteita. Edellä mainittuja kustannuksen malleja perustuu näillä tavoitteilla. Kustannuksen malleja antavat tehokkaita ratkaisuja ja algoritmeja. The multicommodity malli on käsitelty tässä työssä perusteena RV/A-kustannuksen mallille. Myöskin OB käsitelty heuristisia menetelmiä RWA-ongelman ratkaisuun. Työn loppuosassa käsitellään toteutuksia muutamalle mallille ja erilaisia mahdollisuuksia kustannuksen mallein parantamiseen.
Resumo:
Mixture Models can be used in experimental situations involving areas related to food science and chemistry. Some problems of a statistical nature can be found, such as effects of multicollinearity that result in uncertainty in the optimization of a dependent variable. This study proposes the application of the ridge model adapted for mixture planning considering the Kronecker (K-model) and Scheffe (S-Model) methods applied to response surfaces. The method determined the proportions of hexane, acetone and alcohol proportions that resulted in the maximum response of percentage of extracted pequi (Caryocar brasiliense) pulp oil.
Resumo:
The objective of this study was to evaluate the relationships between the spectra in the Vis-NIR range and the soil P concentrations obtained from the PM and Prem extraction methods as well as the effects of these relationships on the construction of models predicting P concentration in Oxisols. Soil samples' spectra and their PM and Prem extraction solutions were determined for the Vis-NIR region between 400 and 2500 nm. Mineralogy and/or organic matter content act as primary attributes allowing correlation of these soil phosphorus fractions with the spectra, mainly at wavelengths between 450-550, 900-1100 nm, near 1400 nm and between 2200-2300 nm. However, the regression models generated were not suitable for quantitative phosphate analysis. Solubilization of organic matter and reactions during the PM extraction process hindered correlations between the spectra and these P soil fractions. For Prem,, the presence of Ca in the extractant and preferential adsorption by gibbsite and iron oxides, particularly goethite, obscured correlations with the spectra.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
Affiliation: Département de Biochimie, Faculté de médecine, Université de Montréal